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FINITE PRECISION ARITHMETIC

IN SINGULAR VALUE DECOMPOSITION ARCHITECTURES

Robert Arthur Duryea, Ph.D.

Cornell University 1987

-!The singular value decomposition (SVD) is an important matrix algorithm

which has many applications in signal processing. However, its use has been

limited due to its computational complexity. SeverVWa-rchitectures have been

proposed to compute the SVD using arrays of parallel processors. lrrthis thesis

)-we-derive,,requirements for the precision of arithmetic units (AUs) used in SVD

arrays and compare the resource requirements of several architectures.

-Gw results are based on the assumption that we are operating on matrices

of quantized data. Since the matrices have quantization errors, we show that

their singular values will have quantization errors which are as large as the data
, I I

errors. To compute the number of bits needed in SVD AUs, we-reet t that the

AUs have enough bits to keep the round-off errors of the SVD computation

smaller than the quantization errors.

Ou analysis shows that we need essentially the same number of bits for

either the Hestenes or Jacobi SVD algorithms. If the matrix has been scaled to

prevent overflows and if we use properly rounded arithmetic, CORDIC and fixed

point AUs require 8 fewer bits than floating point AUs. Our computations

indicate that 32 bit floating point AUs are useful only for small arrays of 8-bit

data. For 100-by-100 arrays of 16-bit data we need 40-bit floating point AUs.

32-bit fixed point AUs can be used in SVD arrays for large 8-bit matrices or

moderate size 16-bit arrays.
NF



We describe five SVD architectures, two "linear" structures and three

"quadratic" arrays, and compare their resource requirements with floating point

and CORDIC AUs. Our comparison shows the total resource requirements of

the linear designs to be lower than that of the quadratic arrays for all size

matrices. The speed of the linear structures is competitive with the quadratic

arrays for matrices up to size 200-by-200 even though the linear designs

require many fewer AUs. CORDIC AUs simplify the architectures but they

double the resource requirements and increase the computation times. We

conclude that a linear array with floating point or fixed point AUs is the best

design for implementation with current VLSI technology.

a

I



©Robert A. Duryea 1987

ALL RIGHTS RESERVED



BIOGRAPHICAL SKETCH

Robert Arthur Duryea was born on February 13, 1951 in the village of South

Egremont, Massachusetts. He graduated in 1968 from Mount Everett Regional

High School in Sheffield, Massachusetts. He entered Rensselaer Polytechnic

Institute (RPI) in the Fall of 1968. Four years later he graduated Cum LaLae with

a Bachelor's Degree in Electrical Engineering. He simultaneously earned a

commission as a 2Lt from the Reserve Officer Training Corps of the United

States Air Force. He remained at RPI for one more year and obtained a Master

of Science degree in Management in 1973. He then went on active duty in the

Air Force and has remained on active duty, progressing to the rank of Major.

His Air Force career has consisted of a series of jobs in research and

development with periodic returns to college. His first assignment was to the

Rome Air Development Center at Griffiss AFB, New York where he developed

systems for compressing and transmitting imagery. In 1979 he obtained a

Master of Science Degree in Electrical Engineering at the Air Force Institute of

Technology at Wright-Patterson AFB, Ohio. Then he was assigned to the Air

Force Technical Application Center at Patrick AFB, FLorida where he developed

computer systems to process seismic and hydroacoustic data. Following this

assignment, the Air Force offered him a once in a life time opportunity to obtain a

Ph.D. in Electrical Engineering at their expense at the civilian school of his

choice. After the completion of his Cornell Ph.D. program he will be assigned to

the Air Force Weapons Laboratory at Kirtland AFB, New Mexico.

Robert is married to the former Marie Malnati. They are the proud parents

of two sons: Andrew, age 10, and Ryan, age 5.

iii

7 w - ~ ~A~ N.



V VV -! r - -7 -777 S. M..Sr..

DEDICATION

To my wife, Marie, and sons, Andrew and Ryan

Thank you for your patience and understanding

I love you all very much

iv

5/



ACKNOWLEDGMENTS

I would like to express my deepest appreciation to Professor Christopher

Pottle, the chairman of my special committee. His constant encouragement,

guidance and support where crucial to the completion of this thesis. I am

especially grateful for the understanding he has shown for the special

circumstances of a married graduate student with children and a compressed

time schedule.

My thanks to Professor Franklin Luk whose courses and research provided

the basis for the majority of my research. I would also like to thank Professor

Gianfranco Bilardi whose courses on VLSI architectures and complexity theory

sparked my interest in this area of research. I was extremely fortunate to have

both of these individuals on my research committee since they are at the very

forefront of VLSI/digital signal processing research.

I would like to thank the members of Professor Luk's research group for the

comments and suggestions they have made on my work. I would especially like

to thank Magnus Ewerbring for the unqualified friendship and support he has

given me through all of my course work and research.

Finally I would like to thank the Air Force and the taxpayers of the United

States for sponsoring this program.

v

N ,5~~ '- I



Table of Contents

Chapter/Section Page

1.0 INTRODUCTION ......... ........................ 1
1.1 Definition and Applications of the SVD .... ............. 1
1.2 Need for Parallel Architectures to Compute the SVD ......... 2
1.3 Need for Comparison of SVD Architectures .............. 3
1.4 Use of Finite Precision Arithmetic .... ............... 4
1.5 Organization of the Thesis ...... .................. 4

2.0 COMPUTATION OF THE SVD ...... .................. 6
2.1 SVD Algorithms ....... ....................... 6
2.2 Rotation Ordering Schemes ...... .................. 7
2.3 Input Data Matrices ....... .................... 12

2.3.1 Quantized Data Values ..... ............... 12
2.3.2 Scaling of the Input Data ..... ............... 13
2.3.3 Input Data Representation ................. ... 13

2.4 Use of CORDIC Processors ..... ................. 14

3.0 REQUIREMENTS FOR FINITE PRECISION AUs IN THE SVD . 18
3.1 Overflow Protection ......................... 18
3.2 Accurate Representation of Small Singular Values .......... 20

3.2.1 Relationships Between SVD and Symmetric Eigenproblem 21
3.2.2 Perturbation Bounds for SVD of Quantized Matrices . . . 23
3.2.3 Variance of the SVD of a Quantized Data Matrix . . . . 25
3.2.4 Experimental Verification of the Variance of the

Singular Values of a Quantized Data Matrix ......... 28

4.0 THEORETICAL ERROR BOUNDS FOR THE JACOBI ALGORITHM 31
4.1 Summary of Wilkinson's Error Analysis of Jacobi Algorithm . . . 31
4.2 Arithmetic Errors in Fixed Point CORDIC Arithmetic Units . . . . 34

4.2.1 Truncation Errors for Fixed Point CORDIC AUs ....... 34
4.2.2 Round-Off Errors for Fixed Point CORDIC AUs ....... 36
4.2.3 Total Errors for Fixed Point CORDIC AUs .......... 38
4.2.4 Minimization of CORDIC Total Error ............. .. 39

4.3 Error Bounds for SVD Algorithms with CORDIC AUs ........ 40
4.4 Summary of Theoretical Error Bounds for the Jacobi Algorithm 43

5.0 EXPERIMENTAL ERROR BOUNDS FOR THE JACOBI ALGORITHM 44
5.1 Simulation Programs ....... .................... 44

5.1.1 Routines forthe Double Precision Jacobi Algorithm . 45
5.1.2 Routines for t-bit Floating Point Arithmetic .......... 48
5.1.3 Routines for t-bit Fixed Point Arithmetic ... ........ 51
5.1.4 Routines for t-bit Fixed Point CORDIC Arithmetic . ... 53

5.2 Input Matrices for the Simulation ..... ............... 62
5.2.1 Norms of Unitorm Random Matrices ............. 62
5.2.2 Effects of Normalizing the A Matrix .... .......... 63

5.3 Simulation Results .... ...................... .. 66

vi



Table of Contents (continued)

Chapter/Section Page

5.4 Statistical Bounds for Round-off Errors in the Jacobi Algorithm 70
5.4.1 Assumptions / Observation ..... .............. 70
5.4.2 General Analysis of Statistical Bounds ... ........ 71
5.4.3 Statistical Bound for t-bit Fixed Point Arithmetic ....... 75
5.4.4 Statistical Bound for t-bit Fixed Point CORDIC Arithmetic. 75
5.4.5 Statistical Bound for t-bit Floating Point Arithmetic . ... 76
5.4.6 Performance of the Statistical Bounds ............ 77

6.0 ERROR BOUNDS FOR THE HESTENES SVD ALGORITHM . . . . 82
6.1 Theoretical, Wilkinson Style Bounds .... ............. 82

6.1.1 Wilkinson Bounds for Fixed Point and CORDIC Arithmetic 82
6.1.2 Wilkinson Bound for Floating Point Arithmetic ......... 84

6.2 Statistical Bounds for the Hestenes Algorithm ............ 86
6.2.1 Statistical Bounds for Floating Point Arithmetic ....... 86
6.2.2 Statistical Bounds for Fixed Point and CORDIC Arithmetic 89

6.3 Summary of Hestenes Bounds ..... ............... 90
6.4 Simulation of Hestenes Algorithms ..... .............. 91

6.4.1 Simulation Programs ...... ................ 91
6.4.2 Simulation Results ...... ................. 93

7.0 NUMBER OF BITS REQUIRED FOR SVD ARITHMETIC UNITS . 98
7.1 Summary of Errors in SVD Algorithms .... ............ 98
7.2 Number of Bits Needed in SVD Systems .... ........... 100

8.0 ARCHITECTURES FOR VLSI SVD PROCESSORS ........... 107
8.1 The Moreno Pipelined SVD Architecture .... ........... 107
8.2 The Schimme!Luk Linear Systolic Architecture ........... 112
8.3 The Brent/Luk/Van Loan Mesh Connected Array .......... 117
8.4 The Luk Triangular Array ...... .................. 119
8.5 The Finn Triangular Array ...... ................. 121

9.0 RESOURCE REQUIREMENTS OF THE SVD ARCHITECTURES WITH
FLOATING POINT AUs ...... ..................... 124
9.1 Ground Rules for the Comparison ..... .............. 124

9.1.1 Definitions ....... ..................... 124
9.1.2 Calculation of Divisions and Square Roots ......... 125
9.1.3 Computation Time vs Arithmetic Units ............ 128
9.1.4 Floating Point versus Fixed Point AUs ............ 128

9.2 Number of Sweeps for Convergence .... ............. 129
9.3 Moreno Pipelined Architecture ............... 134

9.3.1 Number of Parallel Processors and Stages ......... 134
9.3.2 Number of AUs and OPs for n > 142 ......... 135
9.3.3 Number of AUs and OPs for n < 142 ... ....... 136

9.4 Schimmel/Luk Linear Array ..... ................. 138
9.4.1 Arithmetic Units ...... .................. 138
9.4.2 Computation Time ..... ................. 142

vii ilr



Table of Contents (continued)

Chapter/Section Page

9.5 Brent/Luk/Van Loan (BLV) Square Array ............ 143
9.5.1 Rotation Parameter Computation ............ 143
9.5.2 Arithmetic Units ..... ................. 143
9.5.3 Computation Time ..... ............... 145

9.6 Luk Triangular Array ...... .................. 149
9.6.1 General Comments ..... ............... 149
9.6.2 Arithmetic Units ..... ................. 150
9.6.3 Computation Time ..... ............... 151

9.7 Finn Triangular Array ...... .................. 154
9.7.1 General Data Flow ..... ............... 154
9.7.2 Arithmetic Units .... ................. .158
9.7.3 Computation Time ..... ............... 158

10.0 COMPARISON OF SVD ARCHITECTURES WITH FLOATING
POINT AUs ........ ......................... 160
10.1 Total Number of Computations Required ... ......... 162
10.2 SVD Computation Times .... ................ .. 166
10.3 Number of Arithmetic Units ..... ............... 170
10.4 Total Resource Requirements ... .............. .173
10.5 Efficiency of the Architectures ..... .............. 175
10.6 Speedup Provided by the Architectures .............. 178
10.7 Comparison for the computation of I alone ........... 181
10.8 Area Requirements of the Architectures ............. 189
10.9 Summary and Conclusions ..... ............... 191

11.0 COMPARISON OF SVD ARCHITECTURES WITH CORDIC AUS 193
11.1 CORDIC Processors in SVD Architectures ............ 193
11.2 Operation Time and Area Requirements for a CORDIC AU 193
11.3 CORDIC Versions of the SVD Architectures ......... .. 196

11.3.1 Moreno Pipelined Architecture ... .......... 197
11.3.2 Schimmel/Luk Architecture .... ............ 200
11.3.3 Brent/Luk/Van Loan Array ............... 200
11.3.4 Luk Array ...... ................... 202
11.3.5 Finn Array .... ................... .. 203

11.4 Comparison of CORDIC and Floating Point Designs . . .. 204
11.4.1 Number of AUs ..... ................. 204
11.4.2 Computation Time ..... ............... 204
11.4.3 Total Resource Requirements ... .......... 207
11.4.4 Efficiency ...... ................... 207
11.4.5 Speedup ..... .................... .. 210

11.5 Observations and Conclusions ..... .............. 210

12.0 CONCLUSIONS ...... ....................... 213

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Viii



List of Tables

Table Page

3.2.4.1 Variance of the Singular Values of Symmetric Quantized Matrices 29
3.2.4.2 Variance of the Singular Values of Non-Symmetric Quantized

Matrices ....... ......................... .. 29
5.1.2.1 Performance of Function tround ..... ............... 50
5.1.3.1 Performance of Function tfixround ..... .............. 54
5.2.1.1 Norms of Matrices of Uniformly Distributed Random Numbers 64
5.3.1 Round-off Error of the Jacobi SVD Algorithm With t-bit, Floating

Point Arithmetic ...... ...................... .. 67
5.3.2 Round-off Error of the Jacobi SVD Algorithm With t-bit, Fixed

Point, CORDIC Arithmetic .... ................. .. 68
5.3.3 Round-off Error of the Jacobi SVD Algorithm With t-bit, Fixed

Point Arithmetic ..... ...................... .. 69
5.4.6.1 Statistical Bound for the Round-off Error of the Jacobi SVD

Algorithm With t-bit, Floating Point Arithmetic ... ......... 78
5.4.6.2 Statistical Bound for the Round-off Error of the Jacobi SVD

Algorithm With t-bit, Fixed Point, CORDIC Arithmetic ..... ... 79
5.4.6.3 Statistical Bound for the Round-off Error of the Jacobi SVD

Algorithm With t-bit, Fixed Point Arithmetic ............ ... 80
6.4.2.1 Round-off Error of the Hestenes SVD Algorithm With t-bit,

Floating Point Arithmetic ...... .................. 94
6.4.2.2 Round-off Error of the Hestenes SVD Algorithm With t-bit, Fixed

Point, CORDIC Arithmetic .... ................. .. 95
6.4.2.3 Round-off Error of the Hestenes SVD Algorithm With t-bit, Fixed

Point Arithmetic ........ ...................... 96
7.2.1 Number of Bits Required for Jacobi SVD Arithmetic Units . ... 103
7.2.2 Number of Bits Required for Hestenes SVD Arithmetic Units 105
10.1 Comparison of SVD Architectures Computing U, I and V . . 161
10.7.1 Comparison of SVD Archiectures Computing YZ Alone ....... 182

ix



List of Figures

Figure Page

2.1.1 The Hestenes SVD algorithm ..... ................. 8
2.1.2 The Jacobi SVD algorithm ...... .................. 9
2.4.1 CORDIC algorithms for applying and computing plane rotations 17
5.1.1.1 Jacobi SVD algorithm used in the simulation .... ......... 46
5.1.2.1 Program listing for function tround ..... .............. 49
5.1.3.1 Program listing for function tfixround .... ............. 52
5.1.4.1 Program listing for function CORDICangle .... .......... 55
5.1.4.2 Program listing for function COApplyRotation ... ......... 56
5.1.4.3 Program listing for function shiftadd ..... ............. 59
5.1.4.4 Impact of different rounding methods on the CORDIC SVD . 60
6.4.1.1 Hestenes SVD algorithm used in the simulation ... ........ 92
8.1.1 Moreno pipelined SVD architecture .... ............. 109
8.1.2a Inner product unit ....... ..................... 110
8.1.2b Rotation application unit .................. 110
8.1.2c Rotation angle computation norm update unit .......... .111
8.2.1 Schimmel/Luk SVD machine ...... ................ 113
8.2.2a Matrix multiplication unit ..... .................. .. 114
8.2.2b Inner product unit ..................... 115
8.2.2c Pipelined rotation solver ...... .................. 116
8.3.1 Brent/Luk/Van Loan mesh connected SVD array .......... 118
8.4.1 Luk triangular SVD array ...... .................. 120
8.5.1 Finn SVD array ........ ...................... 122
9.1.1.1 Top level dependency graphs for the Hestenes algorithm . ... 126
9.1.2.1 Dependency graphs for the division and square-root algorithms 127
9.2.1 Sweeps required by the Hestenes algorithm ............ 131
9.2.2 Sweeps required by the Jacobi algorithm .............. 132
9.2.3 Sweeps required by Finn's approximate Hestenes algorithm 133
9.4.1.1 Dependency graph for the rotation angle computation and

norm update in the Schimmel/Luk architecture ... ........ 140
9.5.2.1 Dependency graph for algorithm FHSVD .............. 144
9.5.2.2 Dependency graph for algorithm USVD ............... 146
9.7.1.1 Array structure and initial data entry for the Finn architecture 1 55
9.7.1.2 Start up phase of the SVD computation in the Finn array . ... 156
9.7.1.3 One sweep of the SVD computation in the Finn array ........ 157
9.7.2.1 Dependency graph for the rotation angle / norm update

computation of Finn's Method C ..... .............. 159
10.1.1 Total operations required by different SVD algorithms to

compute U, I and V for square matrices ... ........... 163
10.1.2 Total operations required to compute U, I and V for the SVD

algorithm implemented in each architecture ... ......... 165
10.2.1 Computation time for U, I and V for different SVD architectures . 168

x Pp

* - ~ w a..'



List of Figures (continued)

Figure Page

10.2.2 Computation time for U, I and V for different SVD architectures
(for small matrices) ..... .. .................... 169

10.3.1 Arithmetic units required to compute U, I and V for different
SVD architectures ....... ..................... 171

10.3.2 Arithmetic units required to compute U, I and V for different
SVD architectures (for small matrices) .... ............ 172

10.4.1 Total resource requirements of different SVD architectures
for the computation of U, I and V ..... .............. 174

10.4.2 Total resource requirements of different SVD architectures
for the computation of U, I and V (for small matrices) ....... 176

10.5.1 Efficiency of different SVD architectures for the computation
of U, I and V ....... ...................... 177

10.6.1 Speedup provided by different SVD architectures for the
computation of U, I and V .... ................. .180

10.7.1 Arithmetic units required to compute I for different
SVD architectures (for small matrices) .... ............ 183

10.7.2 Total resource requirements of different SVD architectures
for the computation of . ...................... 1 35

10.7.3 Total resource requirements of different SVD architectures
for the computation of I (for small matrices) .. ......... 1..

10.7.4 Efficiency of different SVD architectures for the computation of , 18
10.7.5 Speedup provided by different SVD architectures for the

computation of . ..... ..................... 188
11.1.1 Dependency graph for the rotation angle computation/norm update

function of the Hestenes algorithm with CORDIC processors 194
11.3.1.1 CORDIC version of the Moreno Architecture ... ......... 198
11.3.3.1 Dependency graphs for the BLV array with CORDIC

arithmetic units ....... ...................... 201
11.4.1.1 Arithmetic units required by CORDIC and floating point SVD

architectures to compute U, I and V .... ............. 205
11.4.2.1 Computation time for U, I and V for CORDIC and floating

point SVD architectures ... .................. 206
11.4.3.1 Total resource requirements of CORDIC and floating point

SVD architectures for the computation of U, I and V ........ 208
11.4.4.1 Efficiency of CORDIC and floating point SVD architectures

for the computation of U, I and V ..... .............. 209
11.4.4.1 Speedup provided by CORDIC and floating point SVD

architectures for the computation of U, I and V ........... 211

xi U



1.0 INTRODUCTION

The singular value decomposition (SVD) is a very important matrix

algorithm which has many potential applications in signal processing. However

its use has been limited, particularly in real-time processing, due to its

computational complexity. As a result there has been a great amount of

research interest in fast, parallel implementations of the SVD. To date little of

this research has been translated into hardware. The purpose of this thesis is to

derive requirements for the precision of arithmetic units used in SVD processors

and to compare the resource requirements of several of the proposed

architectures. The comparison is done from an engineering design point of

view. That is, the architectures are analyzed in detail with an eye toward actual

implementation in very large scale integrated (VLSI) circuits.

1.1 Definition and Applications of the SVD

The singular value decomposition (SVD) of a real m-by-n matrix A is given

by

A = U,_VT (1.1.1)

where U is an orthogonal m-by-m matrix; V is an orthogonal n-by-n matrix; and

, is a nonnegative "diagonal" m-by-n matrix.

The SVD is a powerful matrix algorithm. Much of the interest in the SVD

has been at a theoretical level since it provides a fundamental representation of

the properties of a matrix. For example, the singular values can be used to

determine the norms, rank and condition number of a matrix. The singular

vectors provide bases for the range and null space of the original matrix [see

Gol83 for details]. The SVD is also intimately related to the symmetric

eigenproblem since the singular values are the square roots of the eigenvalues
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of ATA or AAT and the singular vectors are the eigenvectors of these symmetric

matrices.

In this thesis we will be concerned not with the theoretical characteristics of

the SVD but with its practical use. In particular we are interested in signal

processing applications of the SVD. Normally, in these types of applications the

SVD is used to decompose large matrices of sensor data to extract fundamental

information about signals contained in the data. We often want tw be able to

perform the SVD repeatedly and rapidly as data flows in from the sensors.

These types of applications have been the driving force behind the

development of the sophisticated parallel architectures for computing the SVD

which we will analyze in later chapters. Applications of the SVD include:

1. Image processing and compression [see for example Shi8l, And76]

2. Adaptive beamforming and signal enhancement [Spe83]

3. Solution of least squares problems and systems of equations [Gol83]

1.2 Need for Parallel Architectures to Compute the SVD

While there are many potential applications for the SVD, few have been

brought to fruition due to the computational complexity of the algorithms used to

compute the decomposition. If we are decomposing an n-by-n array of data,

even the most efficient SVD algorithm, the Golub-Reinsch algorithm [Go170],

requires order n3 [O(n 3)] operations. Many of the practical applications of the

SVD have been experimentally demonstrated only on mainframe computers

using standard math library implementations of the Golub-Reinsch algorithm.

Even at that, investigators are limited to operating on small matrices (normally

smaller than 50-by-50) due to the long computation times involved in computing

the SVD of larger arrays.

"I 7 .
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The majority of signal processing applications do not allow data to be

collected at a central location and processed in batch mode on mainframe

computers. Typical applications require the data to be processed by equipment

which is small, light, rugged and power efficient. The data will usually be

flowing in continuously and must be processed in real time. Additionally, many

SVD applications require the handling of large arrays (as many as 6000-by-

6000 data values for image processing). These requirements can only be met

by special purpose parallel architectures which are implemented in VLSI

circuits.

1.3 Need for Comparison of SVD Architectures

There have been a number of different parallel architectures proposed to

compute the SVD. Some involve linear arrays of 0(n) processors which

compute the SVD in nearly O(n 2) time. Others use O(n 2) arrays of processors

and can compute the SVD in nearly O(n) time. However, these architectures

have been described only at a very high theoretical level. There has been little

engineering analysis of the proposed designs to determine what is required to

translate them into hardware. In particular no one has compared the different

architectures to determine which would be the best for implementation with

current VLSI technology. One of the primary objectives of this thesis is to

analyze and compare several of the proposed SVD architectures.
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1.4 Use of Finite Precision Arithmetic

The second major objective of this thesis is to derive requirements for the

arithmetic units used to construct SVD arrays. Specifically we want to

determine how many bits are needed in the data words used to store, transmit

and process values in SVD hardware. Again we will have signal processing

applications in mind.

Usually, in the signal processing world, the matrices we deal with are filled

with quantized data values produced by "digital" sensors or A-to-D converters.

As a result the data values have inherent "quantization" errors as will the

singular values and vectors produced by an SVD array. Accordingly it is not

necessary to compute the SVD of such matrices to high precision. There has

been much theoretical work on the round-off error characteristics of SVD

algorithms. We will utilize the results of this work to determine the number of

bits needed in finite precision arithmetic units to guarantee that the SVD output

is as accurate as the quantization error will allow. We will also investigate the

use of different types of arithmetic including standard floating point and fixed

point math and the rotation based CORDIC arithmetic proposed by Voider

[Vo159].

1.5 Organization of the Thesis

This thesis is organized as follows. Chapter 2 lays the groundwork for the

subsequent analyses by describing the two known methods for computing the

SVD in parallel, the Jacobi and Hestenes algorithms. It also describes the

characteristics of the input matrices which are commonly encountered in signal

processing applications of the SVD. Chapter 3 gives the requirements which

finite precision AUs must meet to compute the SVD of quantized data matrices.

N
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In Chapter 4 we present a theoretical analysis of the errors encountered in

computing the SVD with the Jacobi algorithm. Chapter 5 gives the results of

computer simulations of the Jacobi algorithm computed with finite precision

arithmetic. The theoretical analysis and computer simulation of the Hestenes

algorithm are presented in Chapter 6. Finally Chapter 7 combines the results of

Chapters 3, 4, 5 and 6 to develop expressions for the number of bits required

by finite precision AUs to compute the SVD.

Then we turn our attention to the architectures which have been proposed

to compute the SVD. Chapter 8 describes five such archltectures. In Chapter 9

we analyze each of the five to determine their computation time for the SVD and

the numbers of floating point or fixed point processors they require. Chapter 10

compares the resource requirements of the five architectures to determine

which is best for VLSI implementation. Chapter 11 gives a similar comparison

for three of the architectures constructed with CORDIC processors. Finally

Chapter 12 gives the overall conclusions of the thesis.



2.0 COMPUTATION OF THE SVD

2.1 SVD Algorithms

The SVD of a real m-by-n matrix A (A e 9 mxn ] of rank r is given by

A = UVT (2.1.1)

where

U (9 91m and UTU Im

V e Xnxn and VTV I n

Y, E9 mxn and ,=diag( , .....

and

a 1 - (72 - " (r > 0' (;rl = 0==0

The standard method for computing the SVD on mainframe computers is

the Golub-Reinsch algorithm [Gol65, Go170]. This algorithm computes the SVD

in two stages. First the A matrix is reduced to upper bidiagonal form by

multiplying it by a series of Householder matrices. The bidiagonal matrix is then

reduced to a diagonal matrix (Y-) by iterative application of the symmetric QR

algorithm (see [Gol83], Section 8.3 for details). This algorithm is very efficient in

the single processor setting since it computes the SVD in O(mn 2 ) floating point

operations (flops) [Gol83]. However, attempts to map the Golub-Reinsch

algorithm onto systolic architectures have failed because of its two-step nature

and communication requirements [Fin83].

There are two other known methods for computing the SVD which are

amenable to parallel processing. The first is the one-sided orthogonalization

procedure of Hestenes [Hes58]. The second is a two-sided Jacobi algorithm due

to Forsythe and Henrici [For60]. Both of these algorithms have been successfully

adapted to systolic architectures.

6I
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The serial version of the Hestenes algorithm appears in Figure 2.1.1. The

method consists of generating an orthogonal matrix V such that the columns of

the matrix H = AV are mutually orthogonal. The nonzero columns of H are then

normalized to give H = UXI where U TU = I and Z is a diagonal matrix. The SVD

of A is easily seen to be HVT - UVT. The V ma" -ix is generated as a product of

plane rotations each of which force orthogonality between two columns of A. The

details of the algorithm are described in [Fin83, Luk80, Mor85].

The Jacobi algorithm appears in Figure 2.1.2. This iterative method uses a

sequence of plane rotations to annihilate off-diagonal e!ements of A. The method

is described in [Bre85a]. It is designed to operate on a square matrix.

Rectangular matrices can be handled by adding columns of zeros to the original

matrix or by performing a OR decomposition of the matrix and applying the

Jacobi algorithm to R [Luk86, Bre85a].

2.2 Rotation Ordering Schemes

The feature of both the Hestenes and Jacobi algorithms which allows them

to be implemented in parallel processors is that more than one of the rotations

can be computed and applied simultaneously. In fact, for a matrix of n columns,

n/2 rotations can be applied at the same time (if n is even). The difficult part of

designing systolic architectures for the SVD is to insure that all n(n-1 )/2 possible

rotations are generated during each sweep while maintaining a nearest neighbor

interconnection pattern. Two specific rotation orderings have been found which

meet these restrictions. They will be described in the Hestenes algorithm context

but they are equally applicable to the Jacobi algorithm.

* %W~F~ q-
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v=I
for = 1,2, ..., n

Pj = a ja

for sweep = 1, 2,
for i= 1, 2, ..., n

for j=i+1,..., n
,y= a ma.

]IPj"i

27

t= sign(x)

I'IJI +1
1

Cose =

sine = t cos e
fork= 1,2, ..., m

aki akh akil cos sin e

Vki Vk Vki Vk[ -sin e cos 0

s p sJn 2 + ycos0sin]0
P] e P 2ycos e sin 0

end {for i and j}end (for sweep)
for j=1,2, ... ,n

a. =,/aa

fori = 1, ... , m

end {for j)

Figure 2.1.1: The Hestenes SVD algorithm (with norm updating)

* r~ - V.. •



for sweep = 1, 2,

for i=1, 2, ... , n

for j =i+1 .. n

x ij

z-w

sign (j 1

2

W2 =y - x

sign(')
t-

2 Xw21+ 2

Figure 2.1.2: The Jacobi SVID algorithm

(with Forsythe, Hennici procedure for rotation computations)
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22

1 + ?-

C 2 2
C1  X1X2  12

c, =T 1X2 + X1(72

c2 = X1X2- Y2

S 1 = a1X 2 + X1 2

fork= 1,2, ... , n
a i k  uik = 1C  1"S i a k Mil

a jk U jk. S 1  C 1.a jk Uj k

a ki a k  a ki ak  c 2  2

V ki V k j  V ki kj. -S 2  C 2

end {for k}

end {for j}

end {for i}

end {for sweep}

Figure 2.1.2 (continued): The Jacobi SVD algorithm

(with Forsythe, Henrci procedure for rotation computations)
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The first is the "odd-even" ordering of [Ste85]. In this scheme the rotation of

odd column pairs is alternated with the rotation of even pairs. For example for

n=8 the sequence of rotation pairs would be as follows:

Step

1 (1,2) (3,4) (5,6) (7,8)

2 2 (1,4) (3,6) (5,8) 7

3 (2,4) (1,6) (3,8) (5,7)

4 4 (2,6) (1,8) (3,7) 5

5 (4,6) (2,8) (1,7) (3,5)

6 6 (4,8) (2,7) (1,5) 3

7 (6,8) (4,7) (2,5) (1,3)

8 8 (6,7) (4,5) (2,3) 1

9 (8,7) (6,5) (4,3) (2,1)

Note that after n steps all n(n-1)/2 column pairs are generated by the odd-even

ordering.

The second ordering scheme which is applicable is the "round robin"

method of Brent and Luk [Bre85b]. This ordering is based on permuting the

columns of A in a round robin sequence. For example for n = 8 the sequence of

rotation pairs generated by this method is:

Step

1 (1,2) (3,4) (5,6) (7,8)

2 (1,4) (2,6) (3,8) (5,7)

3 (1,6) (4,8) (2,7) (3,5)

4 (1,8) (6,7) (4,5) (2,3)

5 (1,7) (8,5) (6,3) (4,2)

6 (1,5) (7,3) (8,2) (6,4)

7 (1,3) (5,2) (7,4) (8,6)

8 (1,2) (3,4) (5,6) (7,8)

In this case all possible column pairs are generated in n-1 steps.
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2.3 Input Data Matrices

2.3.1 Quantized Data Values

Many of the potential applications of the SVD in signal processing involve

the decomposition of matrices of data values that have been quantized to a fixed

number of bits. In most cases these values are generated by analog-to-digital

conversion hardware. It is also frequently the case that the binary numbers used

to represent the values contain an even number of 8-bit bytes in order to conform

to hardware standards. Eight and 16 bits are the most common sizes of data

words with 24 bits used less frequently where extra precision or dynamic range is
needed.

For example, there are many applications of the SVD for digital image

processing. In most cases the image is represented by a square array of 8-bit

unsigned integers. (8-bit data allows 256 shades of grey which is usually more

than adequate.) The SVD is also useful for processing data from arrays of

sensors, such as seismometers and hydrophones. In these cases, the data

values are normally quantized to signed, 16-bit values.

The observation that the original data matrices usually contain quantized

values is crucial to the use of finite precision arithmetic to compute the SVD.

One of the characteristics of quantized data is that the values contain

quantization error. As a result when we compute the SVD of a quantized data

matrix the singular values and singular vectors will also contain "quantization

error." The effect of this quantization error is most apparent for the small singular

values. In particular, we will show that any singular value with magnitude on the

order of the "average" magnitude of the quantization error is highly questionable

and cannot be used reliably in further computations. Therefore, the arithmetic
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used to compute the SVD need only insure that the magnitude of the "round-off"
error is less than the "average" magnitude of the quantization error.

2.3.2 Scaling of the Input Data

For much of the development which follows it is convenient to assume that
the elements of the data matrix (aij) satisfy Jaj j < 1. Even though this is seldom

the case in practice, we can very easily scale the data so that it is true by finding

a constant (c) such that Jcaijj < 1 for all i, j. After the SVD of the scaled values is

computed, the original scale of the singular values can be reconstructed by

dividing each of the computed values by c. In the fixed point context, such a

scaling can be accomplished by shifts of the data values or by simply defining the

fixed point data words so that the binary point is to the left of the most significant

bit.

2.3.3 Input Data Representation

We will assume that the elements of the A matrix have been quantized by

rounding the exact values to b+1 bits where the extra bit is used for sign

representation. We will also assume that the matrix has been scaled so that jai1

< 1 for all i, j. Accordingly we can say that the quantization error (eli) associated

with aij satisfies

-b
le 1 <  = 2 (2.3.3.1)

Further, we will assume that the quantization errors are uniformly distributed on

the interval [-e,E]. With this assumption we see that the expected value of the

quantization error is zero and its variance ( is given by [pp75]

.N

giveby[OI75
"5 '- * %
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2 2 2 -b 

Sb - =- (2.3.3.2)

Finally we will assume that all of the quantization errors in a matrix are

independent.

2.4 Use of CORDIC Processors

The fundamental operations in both the Hestenes and Jacobi algorithms are

the computation and application of plane rotations. It is easy to apply rotations

using multipliers and adders. However, the computation of the rotation

parameters (cos 0 and sin 0) is difficult since the formulas involve square roots

and divisions. An alternative form of arithmetic is available which is perfectly

suited for the role of computing and applying rotations. The alternative is

CORDIC arithmetic.

CORT.IC is the acronym for a Coordinate Rotation DLgital Computer

developed by Voider for the calculation of trigonometric and hyperbolic functions

[Vol59]. Further development and unifying mathematics for the CORDIC

algorithm were done by Walther [Wa171] and Ahmed [Ahm8l]. Recently,

Cavallaro and Luk have presented two articles on CORDIC based SVD

processors [Cav86, Cav87]. The basis for the CORDIC algorithm is coordinate

rotation in a linear, circular, or hyperbolic coordinate system [Wal7l]. The

coordinate rotations are performed very quickly by a series of shift and add

operations which can be implemented in very simple hardware. Of particular

interest for the SVD algorithm is the ability of a CORDIC processing unit to

compute a rotation angle in a single operation. A CORDIC unit can also apply a

rotation to a pair of matrix elements in one operation.
.4

'p.

%.

p.

* ~ I4 ~.* -~'j%
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The basic idea of the CORDIC algorithm is to compute or apply a rotation in

incremental steps. For example, assume that we want to rotate the vector [x A]T

through an angle 0 to give the updated vector [x' y,] That is

x cose -sin
Y, el (2.4.1)

sine0 cosJL

If 0 0 0 +0 1 + ... +0 k we can apply the rotation incrementallyEx l r 1 l . cor
X Cose0 -sin ek case1 -sinOi lCase0 -sine 10r

Y] sin ek COS0k . sin J Cos L sin 0 0 Cos 0  (2.4.2)

or pulling out a cos 0. term from each rotation matrixk 1t n -t n_
y, =( 1c-se )n" (2.4.3)

.--. tan Ok  1 tan 00 o Y

The critical observation of the CORDIC algorithm is that the 0. can be

selected so that the tanO. terms are powers of two. In the "standard"

implementation of the CORDIC algorithm tan0 i = 8i 2 "i where 8 = +1. The 8. are

selected so that

k
0 Xa5 tan1 (2i ) (2.4.4)

i=0

If 0 is in the range [-990, 990] 5i can be found so that equation 2.4.4 is satisfied.

The Hestenes and Jacobi algorithms use angles in the range [-900, 900].
If we choose the incremental angles so that tan01 = 8. 2- we see that the

I p.,

matrix vector multiplications shown in equation 2.4.3 break down to a series of

steps of the form

~. p.- o - .
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Xi+ X i (i 2 " iy

, = i = 0, 1,..., k (2.4.5)Y = Yi +6i2 x i

where x0 = x and yo = y. The beauty of these steps is that the multiplications by

2 i can be replaced by simple shifts . Therefore the majority of the rotation

operation can be performed with shifters and adders. To complete the rotation

we compute

X' = C Xk+1 and y' = C Yk+1 (2.4.6)

where C is given by

k k k 1

" = Jcos e i = JI cos[5 tan 1(2i)] = I (1 + 2 (2.4.7)
i=0 i=0 i=0

C is known as the CORDIC constant since for k > 10 it is approximately constant

with a value of 0.607253. The full algorithm for applying a CORDIC rotation is

shown in Figure 2.4.1.

Not only can we apply rotations with CORDIC processors but we can

compute rotation angles as well. Often in the SVD algorithms we want to

T T 2 2 1/2compute an angle which will rotate a vector [x y] to [r 0] where r = (x + y )

The computation of angles needed to "annihilate" matrix elements is very easy

with CORDIC processors. The algorithm for doing so is also shown in Figure

2.4.1.

We see that CORDIC processors are potentially very useful in SVD arrays.

We will analyze the impact of using CORDIC processors in SVD architectures in

later chapters.

=- e
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Applying a rotation of angle 0 to the vector [x y]T

x = X

Yo = Y

0= 0

for i = 0, 1, ..., k
8i = sign(0j)
xi+1 = x, - 5 i2-'Yj

Yi+l = y, + 8i2 " Xi

ei+1 = i 8i tan- 1 (2  i)

X, = C k+1

y' = C * Yk+1

Computing Angle 0 e [-900, 90] to annihilate y in the vector [x y]T

if (x > 0)
x0 = x

YO = Y
else

X0 = -x

Yo = Y
00=0

fori = 0, 1 ..., k
8i = sign(yi)

Xi+l =xi + 5i 2"i Yi

Yi+I y1 - 812' 2ixi

0+1 = 0i + 6i tan- 1(2 -i)
0= ek+1

Figure 2.4.1: CORDIC algorithms for applying and computing plane rotations

10€
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3.0 REQUIREMENTS FOR FINITE PRECISION AUs IN SVD ARRAYS

In this section we will derive requirements for the arithmetic units used in

SVD arrays.

3.1 Overflow Protection

With finite precision arithmetic we must insure that computed values do not

overflow the maximum representable value. In the Jacobi SVD computation we

need to be concerned about overflow since the diagonal elements of the

updated A matrix grow. In the Hestenes algorithm we must be concerned about

the growth in the elements of A but more importantly we must contend with the

computation of inner products. In both algorithms, overflow is of no concern in
the computation of U and V. Both of these matrices are orthogonal, so we are

guaranteed that their elements satisfy IuijI < 1, IvjI _< 1, for all i, j. Therefore we

only need to analyze growth in the A matrix and its column norms.

By using matrix norm properties we can bound the size of the elements of

the updated A matrix. Specifically we know that [Go183]

max (a ) II
(i, j) '

where A(k) is the updated matrix after k sweeps of either the Jacobi or Hestenes

SVD algorithm. Since A(k) is obtained by multiplying A(k- l ) by orthogonal

matrices we know that [Go183]

(k)(kl ,
IIA I IIA( ) I1 = = AII (3.1.2)

As a result we can say that the elements of the updated A matrix are always

bounded by IIAI12. In turn we can bound jIAI12 by using the relationship [Gol83]

18
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1Ail2  - max aijl (3.1.3)

By the definition of the data matrix given in Chapter 2 we know that 1aijj < 1 for

all (ij). Therefore, we can conclude that

max fa.-,k) 1 [IAII2 : - ', k= 1, 2,3,... (3.1.4)(i ,D '

This relationship shows that if we want to prevent overflow in the

computation of the updated m-by-n A matrix we must allocate (log 2m + 1og 2 n)/2

bits to the left of the binary point in fixed point arithmetic. For the n-by-n

matrices used in Jacobi arrays, we must allocate 1og 2n bits.

In the Hestenes Algorithm, shown in Figure 2.1.1, we see that we must

compute inner products prior to the computation of rotation parameters and at

the end of the algorithm to compute the singular values. To determine the

number of bits needed for overflow protection we must bound the size of the

inner products. Using a series of norm relationships from [Gol83] we can see

that the inner product of columns i and j of A (a ia.) must satisfy

IaT a. 1 max (A TA)jl < 11A Al = AI mn(max ja 1) 2
(, ) (i, ) i j(3.1.5)

Again using the fact that aiiI < 1 we see that

jaTaiI < mn (3.1.6)

So for the Hestenes algorithm we must add log 2 (mn) bits to the left of the binary

point in fixed point arithmetic to prevent overflow. If m = n, we must add 2 1og 2 n

bits. Thus, the Hestenes algorithm can require twice as many bits as the Jacobi

algorithm to prevent overflow.

An alternate method of preventing overflow is to scale all elements of A so

V p,. -
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that IAI2 _ 1. From equations 3.1.4 and 3.1.5 given above we see that if we do

so we can be sure that none of the computations in the SVD will overflow. The

easiest way to insure that IhAi12 is bounded by 1 is to insure that the Frobenius

norm of A (IIAU1F) is bounded by 1 since JhAi12 < IlAIIF. By definition

IIAIIF = a l (3.1.7)

To insure that IIAIIF < 1 we could either divide all aij by IIAIIF or, since laij < 1, we

could divide them all by (mn) 1 2.

Note that scaling the matrix in this way has the very desirable side effect of

reducing the number of bits needed for overflow protection in the Hestenes

1/2algorithm. If we divide al! elements by (mn) , in effect we have we have

allocated 1og 2 (mn)/2 bits for overflow protection. This is half the number of bits

needed to prevent overflow in the inner-product computation if we do not scale

A. This reduction is achieved by taking advantage of the "squaring" effect of the

inner-product computation. Since all elements are scaled down by 1/N(mn), the

product of any two of them will be scaled down by 1/mn. If m = n we will need

only n bits for overflow protection for the Hestenes algorithm, the same as in the

Jacobi case.

In all further analysis we will assume that the A matrix has been prescaled

so that IIAIIF<l.

3.2 Accurate Representation of Small Singular Values

We now turn our attention to the precision needed to represent small data

values in the SVD output accurately . At first thought it would appear that we

need as much precision as possible since the singular values can be arbitrarily

X ,
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small if the original matrix is nearly singular, However, we will show in this

section that because we are dealing with matrices of quantized data values it is

unnecessary to compute the SVD values to a precision less than the

quantization error. The reason for this is that the potential variability of the

elements of the SVD of a quantized data matrix is on the order of the

quantization error.

3.2.1 Relationships Between the SVD and the Symmetric Eigenproblem

In order to quantify the variability of the singular values and vectors of a

quantized data matrix we will draw on several results from symmetric

eigenvalue theory. To utilize these results, we will rely on two relationships

between the SVD and the real Schur decomposition of a symmetric matrix. The

Schur decomposition is given by the following theorem.

Theorem 3.1 [Gol83] For a symmetric matrix A e nxn there exists an

orthogonal 0 such that

QTAQ = diag(%1 , X2, .... Xn) (3.2.1.1)

Proo1 See Golub and Van Loan [Gol83] theorem 8.1-1.

Based on the real Schur theorem we can establish the following two

theorems.

If A E Xnx n is symmetric and its real Schur decomposition is

given by 0 AQ = diag(k1 , X2, .... Xn) where Q = [ql, q2 ..... qn] is orthogonal,

then the SVD of A is given by

UTAv - = diag(al, ( 2, "" n) (3.2.1.2) %

where i= x1, V - 0 and U = [u1, u2, ... , un] where ui = sign(Xi)qi.

r~~~~~~ 
rwj.~ ~ ~ S..~. ~-
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,t

Eof Since Q is orthogonal V is orthogonal. Since the columns of U may differ

only by sign from the columns of 0, U is also orthogonal. Finally
T

ij UTA V. = sign(X) q, A q, = 0, i # j

(3.2.1.3)
= a = sign(X)X, = tXiJ

Theorem 3.3 [Gol83] Given A e 9 mxn (m > n) with SVD given by UTAv = =

diag(a1 , 02, ... on), if we form

B = (3.2.1.4)A0

then the eigenvalues of B are a1, 02, .... , , -Y1' "02 ... "0n and m -n O's.

Proof Let an orthogonal matrix 0 be defined by

Q 1U 1  (3.2.1.5)42U 1 -U 1 2" U 2

where U1 is the first n columns of U and U2 is the last m-n columns of U. We

see that

QTBQ = D 1 diag(, . -" 2, . "' ... , 0) (3.2.1.6)

Since Q is orthogonal, 0 TBQ is a similarity transformation, so the diagonal

elements of D are the eigenvalues of B.

These two theorems give us the connections which will allow us to apply

results from the symmetric eigenproblem to the singular value problem.

~I1

J :'j~1~
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3.2.2 Perturbation Bounds for the SVD of Quantized Data Matrices

There has been much work done on establishing bounds on the

movement of eigenvalues and singular values caused by perturbation of the

original data matrix. For example Wilkinson [Wil65] proves the following:

Theorem 3.4: Given two matrices A and B which have elements which satisfy

Jaijj < 1, Jb1jI < 1 for all i, j, if X, is a simple eigenvalue of A with corresponding

eigenvector xithen the matrix A + eB has a corresponding eigenvalue and

eigenvector [Xi(e), xi(e)] which satisfy

R i(e)- Xj = 0(e) and =x - x e = (3.2.2.1)

Proof See pages 65-67 of [Wil65].

Wilkinson also shows that for multiple eigenvalues the bound on the

magnitude of the shift in the eigenvalues will involve fractional powers of E (see

page 70 of [Wil65]). For , < 1, fractional powers of e will be greater than E. This

means that simple eigenvalues will exhibit the smallest change in value as a

result of perturbations to the original matrices.

Using Theorem 3.2, we can immediately apply Wilkinson's results to the

SVD of a real symmetric matrix to show that the singular values and singular

vectors of a perturbed matrix will be within O(e) of the unperturbed values. We

can use Theorem 3.3 to show that such a relationship exists for the singular

values of a general m x n matrix. That is Ia(e) - al = O(e). In the particular case

we are considering, the perturbation to the data matrix is caused by the

quantization of the data values and e is the maximum size of the quantization

error. Therefore, the magnitude of the "error" in the singular values and vectors

of a quantized data matrix is on the order of the quantization error. The

following theorems quantify the perturbation bound for the singular values.
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Theorem 3.5 [Gol83] Given A and A +E e 9 mxn (m > n), then for k =1,2,..., n

ak(A+ E) - -k(A)I a = IhEll 2  (3.2.2.2)

Eroof See page 286 of [Gol83].

Corollary 3.6 Given that E is a matrix of quantization error with lejl < e = 2 -(b+ l )

Ilok(A+E)- ak(A)l < = f 2(b+l) (3.2.2.3)

Proof From norm theory we know that IJEll 2 < IIEIIF. For the given E the

Frobenius norm can be bounded as follows.

1/2 1/2

II = i=lj=l ] = j= 1 (3.2.2.4)

The corollary is obtained by substituting the bound for IIE112 into Theorem 3.5.

Corollary 3.6 shows that if A is a square (n-by-n) matrix of quantized data

values, the error in its singular values could be as high as n times the

quantization error. This result is very sigr ifiant, es ocially for small singular

values, since the size of the bound is much larger than bounds based on

machine precision arguments. For example, Golub and Van Loan show that for

floating point arithmetic with precision i, the error in the computation of the

singular values of A is O(giIAll2) (see [Gol83] page 175). Therefore if IIAll2 = 1

and we are using 32 bit floating point arithmetic so that jL = 10-7, we expect to be

able to compute singular values of order 10.7. However if A is a 100 x 100

matrix of values quantized to 16 bits, the error bound given by Corollary 3.6 is of

order 10-3. Singular values with lower magnitude could be seriously corrupted

by quantization error.

"N N " N,
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3.2.3 Variance of the SVD of a Quantized Data Matrix

While the bounds given in section 3.2.2 give us an indication of how large

the error in the SVD of a quantized matrix can be, they do not give us any

information on the "expected" value of the error. To establish requirements on

the arithmetic used in the computation of the SVD, we need to know the size of

the average error. Then we can design the arithmetic units so that their

cumulative round-off error is smaller than the average quantization error. The

following theorem gives an expression for the variance of the quantization error

for the symmetric eigenvalue problem.

Theorem 3.7 [Vom83]: Let A be a real, symmetric n-by-n matrix which has

simple eigenvalues X1 < X2 < "." < Xn" Let Q = [qj, q2, ..., qn] be an orthogonal

matrix such that Q TAQ = diag( X1, X2, .... Xn). Let A be perturbed by a symmetric

matrix B whose elements are independent, random variables uniformly

distributed on the range [-e,e]. If the eigenvalues of (A + B) are denoted by 1 <

2 < ... < p.ln then the variance of I.Li, [s2( )] is given up to terms of the fourth order

by

= b (2 C)+ (s), i =1,2,..., n (3.2.3.1)

where

n
Xq4

ij (3.2.3.2)

2 2
S L

b (3.2.3.3)

Proo See page 71 of [Vom83].

a,
'

,.'

,
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Corollaryj 3.8 Given the conditions and notation of theorem 3.7 and ignoring

terms greater than second order, the variance of the eigenvalues satisfy

2 2 2.
Sb  < s() 2s i= 1,2, ..., n (3.2.3.4)

Proof Since Q is orthogonal each of its elements must satisfy lqijj < 1. Therefore

0 <(qij)4 < (qij)2 and

n n

C. = 4 = 1
(3.2.3.5)

So 0 < C i _ 1. The corollary result is obtained by substituting these inequalities

into the expression for s2 (g.ti) given in Theorem 3.7.

Corollary 3.8 shows that the variance of an eigenvalue of a real,

symmetric, quantized data matrix is between one and two times the variance of

the quantization noise. Using Theorem 3.2 we can draw the same conclusion

for the singular values. However, the corollary is only applicable to the very

restricted case of a real, symmetric matrix with simple eigenvalues. The simple

eigenvalue restriction is not severe since multiple eigenvalues are highly

unlikely with finite precision arithmetic and quantized data values. However, we

do not expect to be dealing with symmetric matrices in algorithms involving the

SVD. Therefore we would like some idea of the impact of removing the

symmetry condition from Theorem 3.7 and Corollary 3.8.

The development given in [Vom83] for Theorem 3.7 shows that if we ignore

higher order terms

s = E(d,~) (3.2.3.6)

where E(x) is the expected value of x and D = T BQ. We will use this

*,,.~~~~~~~~~~~ IF - - - - -. aa ;%~%~"~'~~
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observation to estimate the variance of the singular values of a non-symmetric

matrix of quantized values.

Let us assume that A is not symmetric and that its SVD is given by U TAV =

X. We will also assume that A is perturbed by a non-symmetric matrix B whose

elements are independent, random variables uniformly distributed on the range

[-es]. We will define the singular values of A + B to be 1 ' , 2 .... , T n' Using the

observation given above for the symmetric case, we would expect the variance

of "ti [s2 (Ti)] to be approximated by
2 2

s2(ri) = E(d j) (3.2.3.7)

where D = UTBV.

From the definition of D we see that

n n

d H = X ujiVki b k (3.2.3.8)

Therefore

n nE(di~
E* H) 11 = mUji UIiVkiVmi E(bjk bIm) (3.2.3.9)j=1 k=1 1=1 m=l

From the definition of B we can show that

sb, if j=Iandk=m
E(bjkbm) , otherwise (3.2.3.10)

Therefore

nfn n n
2 2 U2 22 2 1 2 1 2321E(dii) = Sb Uj ki = Sb Uji Vki

Each of the sums in the last expression equals 1. Thus, we see that

a,

i. S . . . . -

*.**i~
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2 2 2

S2('Ci) = E(di1 ) = Sb (3.2.3.12)

Equation 3.2.3.12 shows that the variance of the singular values of a real, non-

symmetric quantized data matrix is equal to the variance of the quantization

noise.

3.2.4 Experimental Verification of the Variance of the Singular Values of a

Quantized Data Matrix.

The theoretical results of Section 3.2.3 were verified by computer

simulation. In the simulation, a series of random A matrices, both symmetric

and non-symmetric, were generated and their singular values computed. Then

each A matrix was perturbed with a large number of B matrices where each bij

was a uniformly distributed random variable on the range [2
"(b+l ) , 

2 -(b+1)]. The

SVD was computed for each A + B matrix and the error of the singular values

was computed. The simulation was performed for n = 4 and for b ranging from 3

to 23. Each A matrix was perturbed by a total of 200 B matrices. The results

appear in Tables 3.2.4.1 and 3.2.4.2.

Table 3.2.4.1 shows the results for symmetric A matrices. Since A is

symmetric its singular values are essentially its eigenvalues. As shown in

equation 3.2.3.4 we expect the variance s2 (Li) of the eigenvalues to satisfy s
2 ( 2s 2 2s (p.) For the matrices in the simulation sb= 2 2b/ 1 2 . Table 3.2.4.1

bb 4

shows the theoretical bounds and the minimum, mean and maximum

experimental variances for each value of b. The experimental values are all

within the theoretical bounds.

Table 3.2.4.2 shows the results for A non-symmetric. In this case we

expect the variance of the singular values to be equal to Sb The table shows

>~%
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Table 3.2.4.1

Variance of the Singular Values of Symmetric Quantized Matrices

b Sb 2  2 b2 min s2(ji,) mean s2(p.,) max s(,

3 1 .30e-03 2.60e-03 6.74e-04 1 .51 e-03 2.04e-03
5 8.14e-05 1.63e-04 1. 14e-04 1.23e-04 1.37e-04
7 5.09e-06 1 .02e-05 6.60e-06 7.53e-06 8.40e-06
9 3.18e-07 6.36e-07 4.48e-07 5.42e-07 5.82e-07

11 1 .99e-08 3.97e-08 2.08e-08 2.57e-08 2.94e-08
13 1 .24e-09 2.48e-09 1 .74e-09 2.02e-09 2.27e-09
15 7.76e-1 1 1.55e-1O0 1. 12e-1O0 1.29e-1O0 1.43e-1O0
17 4.85e-1 2 9.70e-1 2 6.47e-1 2 7.37e-1 2 8.36e-1 2
19 3.03e-1 3 6.06e-1 3 4.28e-1 3 4.72e-1 3 5.36e-1 3
21 1. 89e- 14 3.79e-1 4 2.1 5e- 14 2.84e-1 4 3.47e-1 4
23 1.1 8e-1 5 2.37e- 15 1. 55e- 15 1.82e-1 5 2.1 7e- 15

Table 3.2.4.2

* Variance of the Singular Values of Non-Symmetric Quantized Matrices

A Non-singular A-singular
b Sb 2min s2( ,1) mean S2( .t,) max s2(p.j) mean S2(p.,)

3 1 .30e-03 1.21 e-03 1 .32e-03 1 .41 e-03 1 .03e-03
5 8.14e-05 7.54e-05 8.75e-05 9.46e-05 7.21 e-05
7 5.09e-06 4.60e-06 4.97e-06 5.51 e-06 4.15e-06
9 3.18e-07 3.11le-07 3.28e-07 3.37e-07 2.57e-07

11 1 .99e-08 1 .75e-08 2.06e-08 2.45e-08 1 .59e-08
13 1.24e-09 1. 16e-09 1.26e-09 1.38e-09 1.04e-09
15 7.76e-11I 7.08e-11I 7.57e-1 1 8.36e-1 1 6.60e-1 1
17 4.85e-1 2 4.29e-1 2 4.81 e-1 2 5.1 4e- 12 3.97e-1 2
19 3.03e-1 3 2.40e- 13 2.84e-1 3 3.40e- 13 2.49e-1 3
21 1.89e-1 4 1.60e-1 4 1.84e-1 4 2.04e-1 4 1. 48e- 14
23 1. 18e-1 5 1.1 6e-1 5 1.24e-1 5 1.36e-1 5 1.06e-1 5
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the minimum, mean and maximum variances. If the mean column is compared

to the theoretical variance we see very good agreement over the full range of b.

Also displayed in Table 3.2.4.2 is a column for A non-symmetric and

singular. The values in this column are the mean variances of the singular

values when the original A matrix is singular. This experimental run was

included to determine if singularity would have any significant impact on the

stated results. The column shows that the variances for the singular matrices

are consistently smaller than for the non-singular case but the difference is not

large.

We conclude on the basis of the theoretical and experimental analysis that

the variance of the singular values of a quantized data matrix is equal to the

variance of the quantization error. We will use this result in Chapter 7 to

compute the number of bits needed in the arithmetic units of SVD architectures.

However the result is also significant by itself. It shows that we must be aware

of the the characteristics of the original data in deciding how to use the results of

an SVD computation. For example if the application of interest employs the

smallest singular value as a control variable for follow-on actions, then we must

be very wary of using singular values which are smaller than, say, two times the

standard deviation of the quantization error. If our application uses only

"significant" singular values and vectors, then our criterion for significance must

incorporate the inherent precision of the data as well as the precision of the

arithmetic used to compute the SVD.



4.0 THEORETICAL ERROR BOUNDS FOR THE JACOBI SVD ALGORITHM

In the previous section we computed the variance of the singular values of a

quantized data matrix. Now we want to bound the size of the round off error for

SVD algorithms as a function of the number of bits in the arithmetic units. This

will allow us to set the number of bits in the AUs to insure that the round-off error

is no larger than the quantization error. In this chapter we analyze the round-off

error for the Jacobi SVD algorithm. The Hestenes algorithm is analyzed in

Chapter 6.

4.1 Summary of Wilkinson's Error Analysis of the Jacobi Algorithm

Wilkinson [Wil65] performed a detailed analysis of the round-off error for the

Jacobi algorithm for the symmetric eigenvalue problem. His analysis is based on

the use of standard floating point or fixed point arithmetic with a machine

precision of 2 t . Wilkinson shows [see Wil65 pp. 279-281] that for symmetric A e

9 fnxn with true eigenvalues X 1 , X2 ... , Xn, the Jacobi algorithm will compute

eigenvalues LI 1.2, "", N which satisfy

-1/2

* ________3/2__ -t -t (n7

2 __ 18s n3/22 (1 + 9x2 for floating point

(4.1.1)

-1/2

_ ,_ _ - _" 1 2  n . t  1/2
2-" s n 2 [(2 n) +5.84], for fixed point

(4.1.2)

where s is the number of sweeps required by the Jacobi algorithm to reach

convergence. The formula for fixed point arithmetic applies only if

31
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IIAII F < 1 - (maximum possible accumulated round-off error) (4.1.3)

This condition insures that the computations will not overflow. We expect the

accumulated round-off error to be << 1 so the condition of equation 4.1.3 is

essentially satisfied if IIAIIF < 1. We have already assumed in section 3.1 that the

input matrix is scaled so that IIAIIF < 1.

In the floating point error formula given above, the quantity 9 x 2 t

represents the error of the cosines and sines computed in the Jacobi algorithm

[Wil65 pg 275]. The formulas used by Wilkinson to compute the cosines and

sines are not the same as those shown in Figure 2.1.2. A cursory analysis

indicates that the floating point errors for these formulas are slightly higher since

they involve more floating point operations than those used by Wilkinson. We

estimate the errors to be in the range of 12 x 2t. We will use that value from

here on.

In the fixed point error formula, the factor 5.84 inside the square brackets

represents the effect of the error in the computation of the rotation parameters.

Again this factor will be highly dependent on the formulas used in the

computation of the rotation parameters. Also note that this factor becomes

insignificant as n grows large since the term (2n)112 will dominate. We will simply

ignore this factor from here on.

Finally in the floating point formula, the term (1 + 9 x 2 t)s(4n7) looks very

ominous since it grows exponentially with n. However we expect 2 -t << 1.

Therefore the term (1 + 9 x 2 t)S(4n -7) is approximately equal to one for all

practical cases. Using this approximation and the fact that 7(?,i)2 IIA IF 2 , we

see that Wilkinson's error bounds can be simplified to the following:
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,1,!2

- 24 s 3 2  IIAII, for floating point (4.1.4)

,1/2
_i)2 IIAIIF, for fixed point (4.1.5)

Note that since the A matrix has been scaled so that IIAIIF _< 1, we could drop the

norm term from the right hand side of these equations and the inequalities would

still hold.

A careful comparison of our fixed point error formula to that given in (Wil65]

will show that our bound has an extra factor of 2. This is because Wilkinson

assumed that the matrix multiplications would be done with double length fixed

point arithmetic. We are going to assume that single length fixed point arithmetic

is used. Wilkinson shows that the use of single length fixed point math will result

in a factor of two increase in the error bound for the Jacobi algorithm. This is

because the error incurred in performing the multiply accumulate operation in a

plane rotation will be doubled.

'While- Wilkinson states that these error bounds are for the symmetric

eigenvalue problem, when a careful analysis is made of his derivation we find

that it is equally applicable to the SVD of a general square matrix. Wilkinson's

bounds are based on the multiplication of the matrix A on the right and left by a
series of plane rotations. Nowhere in his derivation does he use the fact that A is

symmetric. While he assumes that the rotations on the right will be the same as

those on the left, this assumption is not necessary for his results to hold.

Therefore, the error bounds shown above are directly applicable to the singular

values of a general, real, square A.

- " or-I
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42 A^rithmetic Errors in Fixed Point CORDIC A~ithmetc Units

We can use Wilkinson's fixed point error results to bound the round-off error

in a Jacobi SVD architecture which uses fixed point CORDIC AUs. To do so we

must develop expressions for the error of CORDIC operations. We will develop

the expressions by taking advantage of the results obtained by Hu concerning

quantization effects in CORDIC processors [Hu86]. While Hu's paper gives error

expressions for the circular, linear, and hyperbolic modes of CORDIC operation,

we will only use his results for the circular case.

Hu shows that there are two types of errors in the CORDIC algorithm. The

first is the rounding error due to finite precision arithmetic. The second source of

error is the finite number of iterations used in the CORDIC algorithm. For

example if we wish to compute 8 = tan-1 (y/x), the CORDIC algorithm uses y as a

control variable and tries to reduce it to zero. If we are applying a rotation, 0 is

used as the control variable and it is reduced to 0. However, after k iterations of

the CORDIC algorithm, the value of the control variable will not be exactly 0. As

a result, the output variables will not be exactly correct either. Hu calls this the

approximation error. We prefer to use the term truncation error since it is caused

by the fact that the CORDIC algorithm is truncated after a finite number of steps.

The following theorems from [Hu86] give bounds for the two types of errors for

the computation of angles and the application of rotations for fixed point CORDIC

AUs.

4.2.1 Truncation Errors for Fixed Point CORDIC AUs

Theorem 4.1 - Truncation error for the computation of _: Given initial values x

T [x* Tand y, we wish to compute the angle required to rotate [x y] to [x* 0] where

x* = sqrt(x2 + y 2 ). If we let 0* denote the exact rotation angle and If x(k), y(k) and

,5'
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O(k) represent the output of a CORDIC algorithm after k iterations then

e t 0(k) =- O(k) - 0* = tan-' x(-'k') (4.2.1.1)

x(k) - x*lI y(k) 2

X 2 x(k) (4.2.1.2)

As it stands, this theorem is not particularly useful since we must know the

final output values x(k), y(k) and 8(k) in order to compute the error bounds. We

would like to have apriori bounds. We can obtain such apriori bounds by

combining this theorem with the result given in [Wal7l] that jete(k)l < 2"k+l . Using

this bound and equation 4.2.1.1 we can say that

-1 r y(k)] -k+ 1tan [7- 1 < 2 (4.2.1.3)

Using the small angle approximation that tan 1 (0) = 0, we have

y(k) 2-k+1(421 
)x(k) <2 (4.2.1.4)

Finally combining this bound with equation 4.2.1.2 we can conclude that

Ix(k) - x*I < (2 ) 2-2k+1 (4.21.5)

This last formula shows that the relative truncation error in x(k) is very low. If we

normalize the data matrix so that hJAIF < 1, we know that x* < 1. In this case,

Ix(k) - x* < 2 "2 k+ 1 which shows that the absolute truncation error in x(k) will be

very small as well.

Br
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36

Theorem 4.2 - Truncation error fcr ihe aWplication of rotations: Given initial

values x, y, and 0, let x* and y* denote the exact values obtained by applying an

exact rotation of angle 0 to x and y. Also let r = sqrt(x 2 + y 2). If x(k), y(k) and e(k)

represent the output of a CORDIC algorithm with x, y, and 9 as an input then

Ix(k)- x*I _ 1e(k)I (4.2.1.6a)
r

ly(k) r- Y*I _ 10(k) I (4.2.1.6b)
r

We can quantify the bounds of theorem 4.2 by again using the fact that

10(k) - 0*1 < 2 -k+l. In this case 0* = 0 so we can say that 1e(k)i < 2"k+1. Using this

approximation we see that

2-k+1e t X(k) -x(k)- x' I -r 2(4.2.1.7a)

-k+1et Y(k) a ly(k) -y* 1<! r 2 (4.2.1.7b)

If the data values have been normalized so that r < 1.0, the absolute truncation

error in both x(k) and y(k) is less than 2-k+1.

4.2.2 Round-off Errors for Fixed Point CORDIC AUs

Hu estimates the round-off error for the vector v(k) = [x(k) y(k)]T. His

theorems give bounds on the error between the value of v(k) computed with

infinite precision arithmetic and Q[v(k)] which is the value computed in finite

precision arithmetic. His results are given in the following theorem.

Theorem 4.3 - Round-off error for the application of rotations:

If a CORDIC AU uses fixed point arithmetic with precision F, the round-off error
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er(k) = [er(k) ery(k)] -Q[v(k)] - v(k) satisfies

Iler(k)112  lJ [1 + (k-1)C(k)] (4.2.2.1)

where C(k) = 1/CORDIC constant (= 1.65).

If we use (t+l)-bit, rounded numbers with magnitudes less than 1, then e =

2-(t+l) and the fixed point error bound is given by
-(t+1)7 2-t

I1 (k) 11,!- 2- 2-'+ ) [1 + (k-6)C(k)] 7 k- (4.2.2.2)

Since e(k) = [erx(k) ery(k)]T , the magnitude of either component of e(k) must be

less than or 9qual to IJer(k)j12 . Accordingly the round-off errors for x(k) and y(k)

satisfy
7 -t

erx(k) -IQ[x(k)]-x(k)l < .k2 (4.2.2.3a)

7 2-t

ery (k) -IQ[y(k)]y(k) <.k (4.2.2.3b)

Note that these bounds are only applicable for k < t. In the normal CORDIC

implementation, during iteration k the updated value of x is determined from the

equation xk 1 = Xk ± 2kyk. If k is greater than t then the term would be less

than smallest representable value in the (t+l)-bit number system. So it makes no

sense to perform more than t iterations of the CORDIC algorithm.

Hu does not give a specific bound for the round-off error for the computation

of O(k). In the standard CORDIC implementation 0(k) is given by
k

e(k) = 165tan (2 i ) (4.2.2.4)
i=n

* where 5. ± 1. In fixed point arithmetic a series of additions and subtractions can
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be performed with no round-off error. However that assumes that the variables

being summed can be represented exactly in the fixed point number system.

The terms we are summing [tan " (2 i), i = 0, ..., k] must be precomputed and

rounded to (t+1) bits. So each term has an error with magnitude less than 2
"(t+I )

Accordingly the round-off error ere(k) = Q[G(k)] - O(k) must satisfy

lere(k) < (k+1) 2+l) (4.2.2.5)

Again this formula is only applicable for k < t.

4.2.3 Total Errors for Fixed Point CORDIC AUs

We can combine the results of sections 4.2.1 and 4.2.2 to develop

expressions for the total error of the output values of a CORDIC arithmetic unit.

Specifically if we let z represent either x, y or e, then the total error in z [ez(k)] is

given by

ez(k) =Q[z(k)] - z* =Q[z(k)] - z(k) +z(k) - z* =erz(k) +ez(k) (4.2.3.1)

Using the fact that the magnitude of a sum is bounded by the sum of the

magnitudes we see that

lez(k) < le,z(k)I + leZ(k)1 (4.2.3.2)

We can use this formula and the expressions given in sections 4.2.1 and 4.2.2 for

the truncation and round-off errors to establish the following bounds on the total N.

errors of the CORDIC variables: ,,

le (k) < le (k) le (k)I : (k+1)2(W) + k + 1
- O (4.2.3.3a)

7 -t 2-k+1
le (k)i I le (k)I+le (k)I =-k2 +2 (4.2.3.3b)

X r t X(4.23.3b
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7 2-t -ki-
le (k) 1 le (k)I+ le (k)I = k2 + 2 ( 2 3

y ry t (42.3.3c)

These formulas are valid for k < t.

4.2.4 Minimization of CORDIC Total Error

The equations given in the last section for total CORDIC error show that the

error for all output variables decreases as t increases. However as k increases,

the truncation error terms decrease but the round-off error terms increase. This

indicates that there may be an optimum value for k which gives the lowest total

error.

We can find the optimum value for k by treating t as a constant, taking the
derivative of the total error expressions with respect to k and setting the

derivatives equal to 0. Taking derivatives we find that
die (k)j tl 2k+1

dk = 2 - 2 In(2) (4.2.4.1a)

dlex(k) I dle (k)l 7 -(t+) 2 -k+1d'l = 2 - 2 In (2) (4.2.4.1 b)
dk dk -~ Tn2

Note that the second derivative of all the error formulas is 2k+1l In2(2) which is

greater than 0 for all k. Therefore we are finding a minimum.

Setting the first derivatives equal to 0 gives

-W) - k+1-
2"  2-In(2), for minimum le (k)I (4.2.4.2a)

7 -t k+1.2= 2 In(2), for minimum lex(k)Iand ley(k)I (4.2.4.2b)

Solving these equations for k gives

.It---
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k : t + 2 + Iog2[In(2)] t + 1.5, for minimum le (k) I (4.2.4.3a)

7

k =t +1+ Iog 2[In(2)] - 1og 2(.) = t + 0.25,

for minimum lex(k)l and ley(k)l (4.2.4,3b)

Since both expressions show that the optimum value of k is greater than t and

the error expressions are only defined for k < t, we can not directly use the results

of the minimization analysis. However, the analysis is still useful because it

shows that the CORDIC total error decreases for all values of k < t. Therefore

the minimum error is attained with k = t. If we let k = t in the total error

expressions, we find that

-+1) -t+1 (t+5) 2-t

ee(t)I=(t+l)2 +2 - 2 (4.2.4.4a)

7 2-t 2-t+1 7 2)2 t

lex (t)I = ley(t) 7 t + 2  t ( +2) 2- (4.2.4.4b)

4.3 Error Bounds for SVD Algorithms With CORDIC AUs

In this section we will combine th-e results ol sections 4.A and 4.2 to develop

error bounds for the Jacobi SVD algorithm with fixed point CORDIC AUs.

In his development of the error bound for the fixed point Jacobi algorithm,

Wilkinson [Wil65] shows that the bound is the product of the number of rotations

needed to reach convergence (= sn 2 ) times the error per rotation (IIFII). He also

shows that IIFII is given by

IIFiI = IIGfl + 1S1 RII IIAII (4.3.1)

where IIGII is the error incurred in applying a rotation and 11RI is the error from

the computation of the rotation parameters.

j, I!
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For the fixed point CORDIC case, if we use the Frobenius norm we can say

that

IIGIIF = ,FT lex(t)1 (4.3.2)

since there are 2n terms computed when a rotation is applied to A and each

could have an error as large as lex(t)l.

The matrix 6R is the difference between the rotation matrix for angle 0 and

the rotation matrix for angle 0 + e,(t). From this definition we can see that all of

the elements of 8 R will be zero except for four elements which can be

represented as the following 2-by-2 matrix

cose-cos[e+e 0 (t)] sin e-sin[e+e(t)] 1
sin [e+ee(t)] - sin e cos e- cos[e+ee(t)]

Therefore 116 RIIF is just the Frobenius norm of this 2-by-2 matrix.

Using trigonometric identities we can say that

cos 0 - cos[e+e (t)] = 2 sin( 2 ) ( ()
0 sin(.33

Since we expect ee(t) to be << 1, we can use the small angle approximation

sin[e,(t)/2] - ee(t)/2. Therefore

cos e - cos[e+e(t0] = sin(22 ) e(t) (4.3.4)

Using the fact that the magnitude of sin is bounded by 1 we can say that

Icos e- cos[e+e0(t)]I < leG(t)I (4.3.5)

Using a similar development we can also say that

£" .". ',.. .'. . _'l'. a'S dz,,"S # 2 '. .t '. .Z " g " S "£ t', .'',/.', S '.E." L ", ."2
."
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Isin e - sin[e+ee(t)]I - le (t)I (4.3.6)

Accordingly 118RIlF is given by

11R.! < 4 le,(t) = 2 le(t)1 (4.3.7)

Substituting the bounds for IIRIIF and IIGIIF into the expression for IIFII given in
equation 4.3.1 and assuming that we have constrained IIAIIF! < 1, we see that

IIFIIF -< j lex(t)I + 2 lee(t) (4.3.8)

Substituting in the expressions for lex(t)l and lee(t)l from section 4.2, we see that
IIFIIF<_ t [ "(6+ 2) +2 (t2-5) ] 2-t = 24-n'nt 2 439

Finally, the error bound for the singular values of the Jacobi algorithm with fixed

point CORDIC AUs is sn 2 times IIFIIF or

n521/2

- < 2 s n t 2 , for fixed point CORDIC AUs
(4.3.10)

if IIAIIF is <1.

,,,

| V
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4.4 Summary of Theoretical Error Bounds for the Jacobi SVD Algorithm

In summary we have been able to show the following bounds for the errors

of the singular values generated by the Jacobi algorithm:

- 24 s n 2  IIAI IF for floating point (4.4.1 a)

i-12

- < 2< s n5/22t IIAIIF, for fixed point (4.4.1 b)

1/2

Xi)25/2 -t
< 2sn t2 , forfixed point CORDIC (4.4.1c)

These formulas apply only if the data matrix has been scaled so that hIAil F -< 1.

If we assume that the computation errors are distributed uniformly to the n

singular values, we can say that the computational error in the ith singular value

[e(p.i) = l.i- Xi] satisfies

le(gi)l -- 24 s n 2"t, for floating point arithmetic (4.4.2a)

le(gi)I - s n2 2t , for fixed point arithmetic (4.4.2b)

le(g i )l <  2 s n2 t2 t, for fixed point CORDIC arithmetic (4.4.2c)

ih



5.0 EXPERIMENTAL ERROR BOUNDS FOR THE JACOBI SVD ALGORITHM

A simulation was performed to test the theoretical bounds given in section

4.4. This chapter describes the simulation and its results.

5.1 Simulation Programs

Computer programs were developed to perform the Jacobi SVD using

double precision, floating point arithmetic; t-bit, floating point arithmetic; t-bit,

fixed point, CORDIC arithmetic; and t-bit, fixed point arithmetic. The programs

were written in the C programming language and were run on a VAX 11/780 with

a floating point accelerator.

The programs compute the SVD of a series of matrices with the Jacobi

algorithm, using full double precision arithmetic. The VAX double precision

floating point format has 64 bits with 53 bits allocated to the mantissa. This gives

a machine precision of approximately 10-1. Then the programs compute the

SVD of the same matrices with the Jacobi algorithm using one of the t-bit

arithmetics. Finally, the programs compute the errors in the singular values,

compile appropriate statistics on the errors and print out the statistics and the

theoretical bounds.

For each type of t-bit arithmetic two separate main programs were created

and tested. The first computes the round-off error of the singular values as a

function of the array size (n) while holding t constant (at t = 23). It does so for n

varying from 10 to 50 in steps of 10. We wanted to test the routines at higher

values of n but at n = 50 the processing time for a single matrix was on the order

of 25 minutes. Since the computation time for the Jacobi algorithm is O(n 3 ), the

time to process a single matrix with n = 100 would be on the order of three and a

half hours!

44
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The second main routine computes the round-off error of the singular values

as a function of the number of bits, t, while holding n constant at 20. The value of

t was increased from 15 to 29 in steps of 2. The low !imit of 15 was selected

since this is the number of bits available in many signal processing chips

available today. The upper limit of 29 is imposed by the functions used to

simulate the t-bit arithmetic. All of these functions use integer variables at some

point. In the VAX implementation of C, the longest available integer is 32 bits.

We need 1 bit to represent the sign and we will see that we need 1 bit to allow for

growth of values in some low level routines. This leaves 30 bits available for t.

One additional bit was allowed as a safety margin for the simulation giving the

upper limit of 29 for t.

The following is a brief description of the programs for each type of

arithmetic.

5.1.1 Routines for the Double Precision Jacobi Algorithm

The specific version of the Jacobi algorithm used in the simulation appears

in Figure 5.1.1.1. It uses the Forsythe-Henrici [For60] procedure for computing

rotation parameters. The algorithm performs sweeps on the n-by-n matrix A until

the sum of the squares of A's off-diagonal elements has been reduced to a

specified threshold (delta) or until the number of sweeps exceeds a preset limit

(maxsweeps). In order to save time, the U and V matrices are not computed.

This version of the Jacobi SVD algorithm does not guarantee that the computed

singular values will be positive or that they will be in any specific order.

Therefore the main routines must take the absolute value of the diagonal

elements of the output matrix and sort them prior to computing error statistics.

p. S-
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n n
off Y, l

maxsweeps = 10
sweeps = 0
delta = 1.0e-1 2* off
while (off > delta and sweeps maxsweeps) do

for i 1, 2, ..., n
for i +1, ..., n

w a1 , x = a1 , y ai, z a
z-w

t= sign(r1 )2

r1 + 1

x1 1+2

r r1 =x 1 ti

Z+w
2 -

= sign(r)2

Ik 1r 21' 1 + r2

Figure 5.1.1.1: Jacobi SVD algorithm used in the simulation
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2 2

r2 = x2 t2
C1  := x 2 + r r2

1 1 2 r 1 r2
s:=r 1 x2-x1 r2

C2 :=x x2 - r1 r2
S2  r1 x2 + x1 r2
for k= 1,2, ...,n

, La k Sl C, J a .

~i k. 1k

end { for k }
end {forj}

end { for i I
n n2

off = __ aii
i=1 j=1

iij

sweeps = sweeps + 1

end {while}

F 5

Figure 5.1.1.1 (continued): Jacobi SVD algorithm used in the simulation
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5.1.2 Routines for t-bit Floating Point Arithmetic

The programs for the t-bit floating point simulation used exactly the same

algorithm as the double precision version but all arithmetic operations (+, +x,

and q,/) were performed with t-bit floating point numbers. The t-bit operations are

based on the function "tround" which rounds the mantissa of a double precision

number to t bits. The listing for tround is shown in Figure 5.1.2.1. Its operation is

described in detail in the listing.

The function rounds a floating point number x so that

tround(x) - x < 2. t
X (5.1.2.1)

which is the expected performance for t-bit floating point arithmetic. The

operation of tround was verified by rounding a large number (10000) of random

x's for each value of t and compiling statistics on the errors. Table 5.1.2.1 gives

the results. For all values of t the maximum error encountered was within the

theoretical bound (2 t). If the errors were uniformly distributed on [-2 " , 2 "t we

would expect their variance to be 22t /3. The computed variances are all smaller.

The reason they are smaller is that the errors are not uniformly distributed on the

interval [-2 t , 
2 t. For example, if x is near the boundary between two exponent

ranges then the relative error for tround(x) is in the range [-2(t+' ) , 
2 t]. Therefore

-2t
we expect the variance of the errors to be smaller than 2 /3.

The function tround was used as the basis for functions which perform t-bit

addition, subtraction, multiplication, division and square root. The double

precision Jacobi algorithm was modified to call these t-bit arithmetic functions to

produce the t-bit floating point SVD algorithm.

i , r. ',.,-_-. '. -, .. .'°% .,..,,'.'.',..., '. ', ',_'. '.:-, ', ... '.,.'.-",-', .. '." '.._.'-','. ',,., _-',-',-'% ,.\,"-',,' ".b' .''Z~..'","t,' .'N
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double tround(x)
double x;
/" This function rounds the mantissa of a double precision number to t bits

where t is less than 31. It operates in the following manner. The input variable x

is copied into variable y. Then y is decomposed into an integer exponent "expon"

and a double precision representation of its mantissa using the standard function

frexp. The function frexp guarantees that the magnitude of the mantissa will lie in

the half closed interval (0.5, 1.0). The absolute value of the mantissa is scaled

up by a factor of 2t by loading the integer t into its exponent using the standard

function Idexp. We now have a value whose magnitude is guaranteed to lie in

the range [2 t l , 2t). We want to round this value to t bits. We do this by copying

the value into the long integer variable temp. The VAX version of C truncates the
fractional portion of a number when converting from floating point to integer.

Therefore to produce a rounded integer we must add 0.5 to the double precision

number prior to the conversion. After the conversion, the integer temp has the

scaled, absolute value of the mantissa of x rounded to t bits. To produce the

output vYaue we rescale the data by loading temp into the double precision
variable y and setting its exponent to (expon - t) using the function Idexp. Then

depending on the original sign of x we return either y or -y. */

{ /* begin tround 0/

extern int t; /* Number of bits in mantissa of floating point words */
int expon; /* Exponent of input variable x 0/

long int temp; /* Temporary storage 0/

double y; /* Workcopy of input variable x
y = x;

temp = ldexp(frexp(fabs(y),&expon),t) + 0.5;
y = Idexp((double)temp,(expon - t)),
if (x >= 0.0)

return y;

else
return -y;

/* end tround */

Figure 5.1.2.1: Program listing for function tround

I
,.-:..:..-... -:,.-...-,.. .
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Table 5.1.2.1

Performance of Function tround

t 2t max lerrorl mean error variance 2 2/3

4 6.2500e-02 5.8757e-02 -5.1309e-04 6.9444e-04 1.3021e-03

6 1.5625e-02 1.5381 e-02 -8.9919e-05 4.4120e-05 8.1380e-05

8 3.9063e-03 3.8896e-03 1.9244e-05 2.7241 e-06 5.0863e-06

10 9.7656e-04 9.6692e-04 -2.9220e-06 1.7171 e-07 3.1789e-07

12 2.4414e-04 2.4200e-04 2.7826e-07 1.0857e-08 1.9868e-08

14 6.1035e-05 6.001 le-05 2.0881e-07 6.7621e-10 1.2418e-09

16 1.5259e-05 1.5036e-05 -4.0812e-08 4.1625e-1 1 7.761 Oe-1 1

18 3.8147e-06 3.7769e-06 -5.2880e-09 2.5845e-12 4.8506e-12

20 9.5367e-07 9.4863e-07 -3.8101 e-09 1.6493e-13 3.0316e- 13

22 2.3842e-07 2.3665e-07 1.4934e-09 1.031 Oe-14 1.8948e-14

24 5.9605e-08 5.8711 e-08 -1.5083e-10 6.3130e-16 1.1842e-15

26 1.4901e-08 1.4833e-08 -4.9466e-11 3.9698e-17 7.4015e-17

28 3.7253e-09 3.6240e-09 -3.2055e-12 2.5160e-18 4.6259e-18

30 9.3132e-10 9.2277e-10 1.7780e-12 1.5844e-19 2.8912e-19

' ,

r
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5.1.3 Routines for t-bit Fixed Point Arithmetic

The programs for t-bit fixed point arithmetic were very similar to those for

t-bit floating point arithmetic. However there were two major differences.

First the rotation parameters were computed using the original double

precision functions. The reason for this is that the Forsythe-Henrici formulas can

not be easily implemented in fixed point arithmetic. The formulas have

intermediate values whose magnitude can range from well above 1 to 0. To

simulate the effect of t-bit rotation parameters, the sines and cosines produced

by the double precision routines were rounded to t bits prior to their application.

This departure from a full fixed point implementation is not significant for the

simulation since the error caused by inaccurate rotation angles is overwhelmed

by the error caused by the application of rotations. However, if one actually

wanted to use fixed point AUs in an SVD array, the rotation parameter

computations would have to be reformulated to prevent the wide range of values

seen in the Forsythe-Henrici formulas. Alternatively the fixed point AUs could be

used exclusively in the rotation application units with floating point AUs used in

the rotation computation units.

The second change made to the t-bit floating point routines was the

replacement of the function tround with the function "tfixround". This function

allows the simulation of t-bit fixed point arithmetic even though the variables it

operates on are double-precision floating point values. A listing of tfixround is

shown in Figure 5.1.3.1. Its operation is described in detail in the listing.

The effect of the function is to round a value x so that

(tpItfixround(x) - xl 2(t+) (5.1.3.1)

which is the defining characteristic of 'ip:n- d^ point Addi-t"nally tfixround

,,,o , ,... ,, , .... -. , ,-... ..,.,, fi ro n
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double tfixround(x)
double x;

/* This function allows the simulation of fixed point arithmetic by rounding double
precision numbers in the range [-1, 1] to the closest value which can be
represented by a t-bit fixed point number. It operates in the following manner. If
the magnitude of the input variable is less than the fixed point precision, 2 -(t+1)),
then the value 0 is returned. Otherwise the input variable x is copied into variable
y. Then the absolute value of y is decomposed into an integer exponent,
"expon", and a double precision representation of its mantissa using the standard
function frexp. The function frexp guarantees that the magnitude of "mantissa"
will lie in the half closed interval [0.5, 1.0). The mantissa is scaled up by a factor
of 2(t+expon) by loading the integer (t + expon) into its exponent using the
standard function Idexp. We now have a value whose magnitude is guaranteed
to lie in the range [0.5, 2 t). We want to round this value to t bits. We do this by
converting the value into the long integer variable temp. The VAX version of C
truncates the fractional portion of a number when converting from a floating point
to integer. Therefore to produce a rounded integer we must add 0.5 to the
double precision number prior to the conversion. After the conversion, the
integer temp has the scaled, absolute value of the mantissa rounded to t bits. To
produce the output value we rescale the data by loading temp into the double
precision variable y and setting its exponent to (-t) using the function Idexp. Then
depending on the original sign of x we return either y or -y. */

{ /* begin tfixround */
extern int t; /*..Number of bits in mantissa of floating point words */
int expon; /* Exponent of input variable x */
long int temp; /* Temporary storage */
double y; /* Work copy of input variable x */
double mantissa; /* Absolute value of mantissa of input variable x */
extern double precision; /* Precision of t-bit fixed point arithmetic = 2 -(t+l) */
if (fabs(x) < precision)

return 0.0;
else
{

Sy =x;
mantissa = frexp(fabs(y), &expon);
temp = (long int)(Idexp(mantissa, t + expon) + 0.5);
y = Idexp((double)temp, -t);
if (x >= 0.0)

return y;
else

return -y;

/* end tfixround */

Figure 5.1.3.1: Program listing for function tfixround
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produces errors which are uniformly distributed on the range [-2-(t+ l ), 2 -(t+1)]. The

characteristics of tfixround were verified in the same way as those of tround.

Table 5.1.3.1 gives the performance of tfixround as a function of t. The table

shows that the maximum errors are bounded by 2-(t+ l ) and the variance of the

errors is very close to the theoretical value (2-2t/12) for all values of t.

5.1.4 Routines for t-bit Fixed Point CORDIC Arithmetic

The main routines for t-bit CORDIC arithmetic used the double precision

algorithm as a base but the computation and application of rotations were

performed with CORDIC routines. All data-related computations used integer

arithmetic. In order to perform the t-bit fixed point SVD, the initial data matrices

were scaled by multiplying them by 2 t/IIAII F and rounded to integers so that only t

bits are ever used.

The critical elements of the CORDIC implementation of the Jacobi algorithm

are the routines CORDICangle and COApplyRotation which compute an angle

d apply a rotation with CORDIC arithmetic. They are shown and described in

Figure 5.1.4.1 and 5.1.4.2. They implement the routines shown in Figure 2.4.1

with a few exceptions.
The first exception is the representation of the angles. In the normal

CORDIC implementation a rotation angle (0) is computed using the formula

t-1 '

0 ta l(2-i) (5.1.4.1)~~i=O ,

where 5i 1. In our application we found it convenient to multiply all the

tan(2-') terms by 2 (t1), round the results, and store them in the integer array

phi. Our angles (et) are computed using the formula

. i
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Table 5.1.3.1

Performance of Function tfixround

max Terrori mean error variance 2 2t/ 1 2

3 6.2500e-02 6.2500e-02 -5.4687e-04 1.2913e-03 1.3021e-03

5 1.5625e-02 1.5625e-02 -9.0820e-05 8.0638e-05 8.1380e-05

7 3.9063e-03 3.9063e-03 -1.3831e-04 5.1322e-06 5.0863e-06

9 9.7656e-04 9.7656e-04 1.0052e-05 3.2373e-07 3.1789e-07
11 2.4414e-04 2.4414e-04 -2.7475e-06 2.0101 e-08 1.9868e-08

13 6.1035e-05 6.0916e-05 -5.4458e-07 1.2448e-09 1.2418e-09
15 1.5259e-05 1.5229e-05 -1.7985e-07 7.9034e-1 1 7.761 Oe-1 1
17 3.8147e-06 3.8143e-06 1.2093e-08 4.6776e-12 4.8506e-12

19 9.5367e-07 9.5139e-07 -6.5040e-09 2.9478e-13 3.0316e- 13
21 2.3842e-07 2.3840e-07 3.9663e-10 1.9058e-14 1.8948e-14

23 5.9605e-08 5.9415e-08 2.0060e-09 1 .1 632e-1 5 1 .1 842e-1 5
25 1.4901 e-08 1.4834e-08 -1.9386e-1 0 7.5562e-1 7 7.4015e-1 7
27 3.7253e-09 3.7249e-09 8.5022e-11 4.7658e-18 4.6259e-18

29 9.3132e-1 0 9.3058e-1 0 -3.2347e-1 1 2.7733e-19 2.8912e-1 9

"1

I4
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void CORDICangle(u, v, theta)
long int u, v, *theta;
/* This function computes the angle, theta, needed to rc.*ate the vector [u v]T to

the vector [r 0 ]T where r = ± sqrt(u 2 + v 2 ). If lvi is less than a preset threshold,
10, then theta is set to 0. Otherwise the function computes theta using the
CORDIC algorithm shown in Figure 2.4.1. The angle theta is returned as a
scaled, integer version of the true angle

theta = 2 (t-1) * theta in radians
where t is the number of bits being used in the CORDIC operations. */
{ /* begin CORDICangle */

int i;
long int x, y, angle;
if (abs(v) <= 10)

*theta = 0;
else{

if (u >= 0){ :
X =U;
y =v;

}/* end if of if (u > =0) */
else{ ,{

X = -U;
y =-V;

}/* end else of if (u >= 0) */
angle = 0;
for (i =0; i <t; i++)
{

if (y > 0)
{

angle = angle + phi[i];
u = shiftadd(x, y, i);
v = shiftadd(y, -x, i);

}/* end if of if (y > 0) */
else{

angle = angle - phi[i];
u = shiftadd(x, -y, i);
v = shiftadd(y, x, i);

}/* end else of if (y > 0) */

X -U;
y =v;

}/* end for (i = 0;i < t; i++) */
*theta = angle;

}/* end else of if (abs(v) <= 10) */

Figure 5.1.4.1: Program listing fnr function "CORDICangle"

.V
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void COApplyRotation(u, v, theta, C)
long int *u, *v;
long int theta;
double C; /* CORDIC constant */
/* This function applies a rotation of angle theta to the vector [u v]T. If theta = 0
on entry no action is taken so the original values of u and v are maintained. If
theta # 0 then the rotation is applied using the CORDIC algorithm shown in
Figure 2.4.1. */
{/* begin COApplyRotation */

int i;
long int x, y, a, b;
if (theta == 0)

return;
else

x= *U;
Y*Vy = "v;

for (i = 0; i < t; i++)
{

if (theta >= 0)

{
b = shiftadd(x, -y, i);b = shiftadd(y, x, i);

theta = theta - phi[i];
}
else

/*theta< 0*/

a = shiftadd(x, y, i);
b = shiftadd(y, -x, i);
theta = theta + phi[i];

}
x =a;

y =b;

}/* end for (i = 0; i < t; i++) */

u = rint(C * (double)x);
v = rint(C * (double)y):

}/* end else of if (theta == 0) "/

/* end COApplyRotation */

Figure 5.1.4.2: Program listing for function "COApplyRotation"

-4,
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t-1

0,= -,phi[i] 2 (t)0  (5.1.4.2)
i=0

The resulting angle is an approximate, scaled version of the original angle.

However, since we use the same phi[i] terms when we apply the rotation, we end

up transferring the exact angle information.

The second exception is the inclusion of a threshold test for the computation

of rotation angles. If the element to be annihilated is sufficiently small (10 was

found to be a good threshold) the angle is set to zero. If the rotation application

routine detects a zero angle it simply returns the original values. The reason the

threshold was included was to allow a fair comparison between the CORDIC

results and the fixed point and floating point results. In the floating point and

fixed point ca .s a threshold must be included in the rotation computation to

prevent overflows. If the threshold is reached, the rotation parameters, cos 8 and

sin 8, are set to 1 and 0 respectively, i.e the angle is set to 0.

The third exception to the normal CORDIC implementation is the use of the

function shiftadd to compute the updated data values. The true formula for

computing the updated value of x in step i is

-i
Xi41 = xi±2 yi (5.1.4.3)

In practice this computation is performed by shifting y. right by i bits and adding it

to or subtracting it from x.

X+1  x +shiftright(y,) (5.1.4.4)
(i bits)

However we discovered in the course of our simulation that this leads to very

large errors in the CORDIC SVD algorithm. The reason for the large errors is

that the shift operation truncates the scaled value of y so instead of computing x
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as in equation 5.1.4.3 you actually compute

--1 .+ truncate(2'y )
(to t bits) (5.1.4.5)

This truncation causes the errors in the CORDIC algorithm to be biased and add

up very rapidly.

The function shiftadd shown in Figure 5.1.4.3 corrects this by computing

x..1 -x•±round (2-'y)(to t bits) (5.1.4.6)

By rounding the scaled value of y the bias is eliminated from the CORDIC error

so the error accumulates much less rapidly. Note that the shiftadd function

includes special code to handle the case when 2'yi has a fractional part which is

exactly equal to 0.5. The extra code insures that values that fall into this

category are rounded to even. As described in [Was82] and [Yoh73] this

procedure gives an unbiased rounding. It is crucial that unbiased rounding be

used in the CORDIC algorithm. Since we are always "dividing" by powers of two

it is quite common for values with fractions equal to 0.5 to appear. In fact we

found in our simulations that such values appear in approximately 5% of the

shiftadd operations. If biased rounding is used the errors found in the singular

values produced by a CORDIC SVD algorithm are much higher than if unbiased

rounding is used. Figure 5.1.4.4 shows the effect of different roundings on the

SVD errors. Clearly unbiased rounding is best.

Unfortunately the arithmetic of the VAX1 1/780 gives biased rounded results.

We used floating point arithmetic in the shiftadd function to simulate the unbiased

rounding operation on the VAX. However in an actual implementation the

shiftadd operation can be performed correctly with t-bit fixed point arithmetic

augmented with three extra bits (see [Was82] for details).

leI
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long int shiftadd(x, y, i)
long int x, y;
int i;

/* This function returns an unbiased rounding of the value u = (x + 2'y). It
operates in the following manner. It computes the true double precision value of
u and copies the absolute value of u into v. It then truncates v to an integer and
stores the result in k. If the difference between v and k is not equal to 1/2 then
the function returns the value of u rounded to the closest integer with the
standard function "rint". In the Vax implementation of rint, if v-k = 0.5 rint will
round away from 0 which gives a biased rounding. To produce an unbiased
rounding, when v-k = 0.5 the value of k is tested to determine if it is odd. If so it is
incremented so that it is even. Then the value of k with the appropriate sign is
returned. */

{/* begin shiftadd */
double u, v;
double onehalf = 0.5;
long int k;
long int one = 1;

u = (double)x + ((double)y * inv2[i]) /* inv2[i] = 2- i  */
v = fabs(u);
k = (long int)v;
if ((v - k) != onehalf)

return rint(u)
else
{ /* v - k = 0.5 so return to nearest even integer to u */

if (k & one)
k++;

if (u >= 0.0)
return k;

else
return -k;

}

Figure 5.1 .4.3: Program listing for function "shiftadd"
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One additional bit is needed in a CORDIC AU to allow for growth in the data

values. In the routine COApplyRotation, when the input vector [x, y]T is rotated

by angle theta its length grows. To return its length to the proper value we must

multiply the rotated vector's coordinates by the CORDIC constant. Prior to the

multiplication, the vector's coordinates are approximately 1.6 times their final

values. Therefore, it is possible that the intermediate values in COApplyRotation

could have magnitudes as larger as 1.6 x 2 t . This value requires t+1 bits to be

represented accurately.

One additional observation must be made about the CORDIC constant. In

our simulation we have used the expedient method of applying C with double

precision arithmetic. In actual CORDIC hardware there are two approaches to

applying C. The first was recommended in Haviland and Tuszynski [Hav8O] and

involves repeating some of the CORDIC iterations. The purpose of the repetition

is to force C towards unity. However, this repetition of iterations has the

undesirable side effects of increasing the round-off error and lengthening the

CORDIC computation time. For example when t = 24, Haviland and Tuszynski

show that a total of 12 iterations must be repeated to make C = 1. So we can

expect the error and computation time to be 50% greater. To compensate for the

increased error we would need additional bits in the CORDIC word. The

alternative is to implement a special purpose multiplier that scales any input

value by C. Such a dedicated hardware unit could apply the scale factor quickly

and with little or no error. However, it would require a significant amount of chip

area. We have chosen to simulate the dedicated multiplier approach since the

50% increase in time and round-off error caused by the repetition scheme seems

prohibitively high.
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5.2 Input Matrices for the Simulation

The input matrices for the Jacobi algorithm simulations were n-by-n matrices

of random numbers which were (hopefully) uncorrelated and uniformly distributed

on the range [-1, 1]. We used the VAX C-library routine "random" to generate the

matrix elements.

5.2.1 Norms of Uniform Random Matrices

We have seen that the bounds for round-off errors of the singular values

depend on the norm of the original matrices. The expected value of the norm of

uniformly distributed random matrices is directly related to the number of

elements in the matrices. The following analysis shows the dependency of IIAIIF

and {AIl2 on n.

For the Frobenius norm

E(IIAII2) E .a l Y E(a.) =n 2 E(a) (5.2.1.1)F i= 1 j=1 i i=l j=l (5211

We can make the final step in this equation because ai is uniformly distributed on

the range [-1, 1] which implies that it has zero mean and variance 1/3. Sin.ce the

E(IIAIIF2 ) = n2 /3 we can expect IIAII F = n/43.

Due to the complex definition of the 2-norm, we can not compute its

expected value directly. However from norm theory we know that IAIl 2 
>

IIAIF/q'n so we can say that E(I1A112 ) > E(IlAII F /  n or

n ,n
E(Al2- (5.2.1.2)

We ran an experiment to verify these expected values for IIAIIF and IAil 2.

I,



63 r

The experiment involved generating a series of random matrices (for 10 < n < 50)

and computing their norms. The results appear in Table 5.2.1.1 The table shows

that the Frobenius norm is essentially equal to n/43 over the full range of n. The

experiment also shows that the E(IIA112) = 4n which is certainly greater than

41n13.

5.2.2. Effects of Normalizing the A matrix

In our simulations we normalized the A matrices to prevent overflows in the

t-bit arithmetic computations. For the Jacobi algorithm, the ideal normalization

procedure would be to divide all of A's elements by IIAil2. This would insure that

the maximum value in the computations would always be equal to 1. Thus

dividing by IIAi 2 not only prevents overflows but also makes full use of the range

of numbers available in t-bit arithmetic. However we do not know IIAil2 until the

SVD computation is complete. Therefore we are forced to use alternative

normalization constants such as IIAIIF or n. Both of these constants will prevent

overflow and they are either known or can be computed easily prior to the start of

the SVD. However, normalizing with either IIAIIF or n reduces the range of the

data values. The following computations show the effect of normalizing with

IIAIIF or n on E(IIA112 ) for uniformly distributed random matrices.

For B = (1/IIAIIF) * A

E(IAI12) _ . _

E(I1BI12 ) = IIAIIF -n/j- (5.2.2.1)

For C= (1/n) * A,

E(I!AIIF) n/' 1 ii

E(II CIIF) n - (5.2.2.2)

E(C -.I.. ...
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Table 5.2.1.1

Norms of Matrices of Uniformly Distributed Random Numbers

A an n-by-n matrix with all aij C [-1, 1]

nE(IIAIIF) n/4,3 E(IIAII2) 4n

10 5.780 5.774 3.239 3.162
20 11.499 11.547 4.764 4.472
30 17.377 17.321 5.854 5.477
40 23.029 23.094 6.748 6.325
50 29.044 28.868 7.923 7.071

B = A/IIAIIF

n IIBIIF E(IIBII 2 ) 43/,n

10 1.000 0.561 0.548

20 1.000 0.414 0.387
30 1.000 0.337 0.316
40 1.000 0.293 0.274
50 1.000 0.273 0.245

C = A/n
Theoretical E(IICIIF) = 1/13 = 0.577

n E(IICIIF) E(IICil2) 1/lqn

10 0.578 0.324 0.316
20 0.575 0.238 0.224
30 0.579 0.195 0.183
40 0.576 0.169 0.158 v
50 0.581 0.158 0.141

III
rI .W'
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E(IAII2) _/n 1
E(IIC112)= n = =n " (5.2.2.3)

Note that we have used the experimental result that E(IIA112) = 4n to derive these

results. These theoretical values for the norms of the normalized matrices were

confirmed by experiment. The experimental results are shown in Table 5.2.1.1.

The impact of normalizing by ILAIIF or n is to reduce the largest singular

value to O(1/4/n). If we have designed our fixed point arithmetic to handle

numbers as large as 1, we are not using their full range. In fact we could reduce

the number of bits allocated to overflow protection (guard bits) by Iog 2 (4n). Note

also that there is only a slight penalty to pay for using n as the normalization

constant instead of IIAIIF. The E(IC112 ) is only a factor of 4,3 less than E(11B112 )

which translates into a penalty of less than 1 guard bit. At the same time using n

as the normalization constant avoids the necessity of computing IIAtIF.

The conclusions given above are really true only for uniform random

matrices. However, they do give us some indication of what can be expected in

real applications. Even though the results show that we could use fewer guard

bits, it is probably unwise to do so. In real systems it is possible that sensor

failures or extremely large signals will cause a continuous stream of maximum

values to appear at the input of an SVD array. This case will cause the largest

singular value to jump to 1 under any of the normalization methods we have

discussed. In our computation of the number of bits needed in fixed point AUs

(given in Chapter 7) we have assumed that the input matrices are normalized by

dividing all elements by n.

I !d~ ~ ~ S- --'* ~-
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5.3 Simulation Results

The results of our simulation of the Jacobi SVD algorithm with t-bit

arithmetic are given in the form of three tables. Table 5.3.1 gives the results for

t-bit floating point arithmetic. Table 5.3.2 shows the output for t-bit, fixed point,

CORDIC arithmetic and Table 5.3.3 covers t-bit, fixed point arithmetic. Each

table shows the minimum, mean and maximum round-off errors of the singular

values as a function of n and t. The tables include a column labeled "s" which is

the number of sweeps needed by the t-bit Jacobi algorithm to reach

convergence. There is also a column labeled "#" which is the number of samples

analyzed to produce the minimum, mean and maximum errors. Finally the tables

have a column showing the theoretical bounds and a column giving the ratio of

the bound to the maximum error. The theoretical bounds were computed using

the following formulas which were computed in section 4.4

je(ji1 )j < 24 s n 2 t, for floating point arithmetc (5.3.1 a)

n2 -tIe(piL)I _ r2 sn 2 for fixed point arithmetic (5.3.1b)

le(g, )l -2 s n2 t 2 , for fixed point CORDIC arithmetic (5.3.1c)

The tables show that the maximum round-off errors are well within the theoretical

bounds for all three types of arithmetic. The tables also show that the bound to

maximum error ratio grows rapidly as a function of n for all three types of

arithmetic. This indicates that the relationship of the bound to n is too strong.

We do not see strong trends in the bound to maximum ratio as a function of t for

the floating point and fixed point cases. This indicates that the bound's functional

dependence on t is appropriate. There is a strong upward trend of the ratio as a

function of t for CORDIC arithmetic.

aeS
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Table 5.3.1

Round-off Error of the Jacobi SVD Algorithm
With t-bit, Floating Point Arithmetic

bound = 24 s n 2-t

As a function of n (t =23)

n S # min le(g)l mean le(g1 )j max le(la)I bound bnd/max

10 5 250 3.66e-09 8.38e-07 3.36e-06 1.43e-04 43
20 6 400 5.90e-10 1.60e-06 4.81 e-06 3.43e-04 71
30 7 270 3.67e-08 2.25e-06 6.77e-06 6.01 e-04 89 .

40 7 200 3.11e-09 2.77e-06 7.25e-06 8.01e-04 110
50 7 200 5.88e-09 3.35e-06 8.27e-06 1.00e-03 121

As a function of t (n = 20)

t S # min le( i)I mean le( Lj)I max le( i)I bound bnd/max

15 6 200 2.45e-06 4.53e-04 1.27e-03 8.79e-02 69
17 6 200 8.15e-07 1.14e-04 3.23e-04 2.20e-02 68
19 6 200 1.01 e-07 2.80e-05 8.25e-05 5.49e-03 67
21 6 200 7.19e-09 6.89e-06 2.10e-05 1.37e-03 65
23 6 200 1.13e-08 1.65e-06 4.78e-06 3.43e-04 72
25 6 200 5.56e-09 3.67e-07 1.18e-06 8.58e-05 73
27 6 200 1.44e-10 9.70e-08 2.92e-07 2.15e-05 74
29 6 200 4.61 e-11 1.71 e-08 6.71 e-08 5.36e-06 80

. '-' ' ;; -; .' .. ."% % * : , -' ',..'. ,,-.,-. ;. , -. ., .:..-,..-. -..-.,-..........,-... ......-.,..... , ".
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Table 5.3.2

Round-off Error of the Jacobi SVD Algorithm
With t-bit, Fixed Point, CORDIC Arithmetic

bound = 2 s n2 t 2-t

As a function of n (t = 23)

n s # min le(pLj)j mean le( i)l max le(ji)I bound bnd/max

10 5 180 1.18e-09 9.51e-07 3.18e-06 2.74E-03 862
20 6 180 2.11 e-08 2.27e-06 6.48e-06 1.32E-02 2030
30 6 150 3.07e-08 3.34e-06 8.25e-06 2.96E-02 3591
40 7 120 1.16e-08 4.53e-06 1.02e-05 6.14E-02 6035
50 7 100 5.09e-07 5.56e-06 1.21 e-05 9.60E-02 7926

As a function of t (n = 20)

t s # min Ie(i)I mean le(ji)I max je() bound bndlmax

15 5 180 1.69e-08 4.03e-04 1.29e-03 1.83E+00 1421
17 5 200 1.79e-08 1.02e-04 2.91e-04 5.19E-01 1783
19 5 160 2.12e-07 2.73e-05 8.71e-05 1.45E-01 1664
21 6 180 3.32e-08 6.61e-06 2.15e-05 4.81E-02 2237
23 6 200 7.89e-08 2.29e-06 6.48e-06 1.32E-02 2030
25 6 200 2.96e-09 4.87e-07 1.32e-06 3.58E-03 2712
27 6 200 8.80e-11 1.45e-07 4.1Oe-07 9.66E-04 2353
29 6 180 1.23e-10 3.19e-08 8.39e-08 2.59E-04 3089

I.t

-4
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Table 5.3.3

Round-off Error of the Jacobi SVD Algorithm
With t-bit, Fixed Point Arithmetic

bound = J s n 2 t

As a function of n (t = 23)

# min le(li)l mean le(#')I max le(ji)I bound bnd/max

10 5 250 1.05e-09 3.23e-07 1.08e-06 8.43e-05 78
20 6 400 9.92e-10 5.26e-07 2.03e-06 4.05e-04 199
30 7 240 4.41 e-09 7.22e-07 3.06e-06 1.06e-03 347
40 7 200 5.40e-09 8.22e-07 2.61 e-06 1.80e-03 724
50 7 200 3.84e-09 8.53e-07 3.12e-06 2.95e-03 945

As a function of t (n = 20)

t s # min Ie(.t)I mean le(ti)I max le(j)l bound bnd/max

15 4 160 1.06e-08 1.79e-04 5.1Oe-04 6.91e-02 135
17 5 180 3.29e-08 3.68e-05 1.16e-04 2.16e-02 186
19 5 180 2.36e-08 8.42e-06 2.65e-05 5.39e-03 204

21 5 200 9.40e-09 2.13e-06 7.66e-06 1.35e-03 176
23 5 200 3.16e-09 5.07e-07 2.01e-06 3.37e-04 16.
25 5 180 1.63e-09 1.43e-07 5.53e-07 8.43e-05 11 2

27 5 120 3.82e-10 5.55e-08 1.29e-07 2.1 le-05 163
29 6 160 2.67e-10 8.80e-09 3.19e-08 6.32e-06 198

.71
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These initial results from the simulation were somewhat disappointing since

they showed , at the bounds were excessively loose and had too strong a

dependence on n. Our end objective is to determine the number of bits needed

in the SVD AUs to insure that the round-off error is approximately the same

magnitude as the quantization error. To do this we need tight bounds on the

round-off error so that we do not assign too many bits to the task of controlling

the round-off error. In order to improve the bounds we carefully observed the

accumulation of errors in the singular values during the simulation runs. This

observation allowed us to develop some approximate statistical bounds which

are much tighter than the theoretical, worst case bounds. These statistical

bounds are developed in the next section.

5.4 Statistical Bounds for Round-off Errors in the Jacobi Algorithm

5.4.1 Assumptions/Observations

Our statistical bounds are based on the following assumptions and

observations:

a. We need not be concerned with the errors in computing the rotation

angles in the error bounds. Van Loan has shown [Van85] that the angles can be

computed very roughly and the Jacobi algorithm will still converge. As long as

we maintain the orthogonality of the rotations and maintain some significant

number of bits in the angles, the algorithm works. The primary impact of using

approximate angles is to increase the number of sweeps. Therefore, the round-

off error attributable to the angle computations is already accounted for by the "s"

term in our bounds.
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b. We will assume that we are operating on a non-singular matrix. This is

not a crucial assumption but it makes the analysis easier. In all of our simulation

runs the Jacobi algorithm converged nicely whether or not the matrix was

singular. Further, there appears to be no significant difference in the magnitude

of the round-off error of a nearly zero singular value and that of a normal singular

value.

c. As the Jacobi algorithm progresses towards convergence the error in the

diagonal elements grows with n and s. However, the error in the off-diagonal

terms does not grow since each off-diagonal element is zeroed out during each

sweep. This zeroing effectively resets the error in the off-diagonal terms to zero.

d. As the Jacobi algorithm progresses, the rotation angles converge to zero.

The reason that the angles get smaller is that the diagonal elements are growing

while the off-diagonal elements are getting smaller. The angles are computed by

taking the inverse tangent of the ratio of the sum or difference of off-diagonal

elements to the sum or difference of diagonal elements. Since the off-diagonal

elements are going to zero while the diagonal elements grow, the ratios will go to

zero as will the angles.

5.4.2 General Analysis of Statistical Bounds

When we combine these observations we come to an interesting conclusion

that allows us to compute approximations for the round-off errors of the diagonal

elements. The conclusion is that as the Jacobi algorithm progresses the round-

off error in the off-diagonal elements has less and less impact on the round-off

error of the diagonal elements. Let's take a look at the application of a rotation to

two elements of the A matrix using fixed point arithmetic to show why this is true.



72

Assume that we are applying a rotation of angl, 0 whose cosine is c and

whose sine is s to the elements aii and ai. Assume also that the matrix elements

have accumulated error eii and eij to this point in the algorithm. That is, we have

di aii + eii and Aij a.. + el." The computation we wish to perform is

'A k) [c -S' [a~) [c sHk e -)

M, - c [ (k-1) [ k1) e(k-1 (5.4.2.1)a j JL ij L I'  ij "11

Let us define the updated A elements to be the sum of a true value and an

error component

.k) Fa(k)] e (k)1

4k) ( ( k ) (+4)
Laj La,1  eIj

Equating terms we see that

(k)[ (k-1)]

aiij c J-s aij
(k) =k-1 (5.4.2.3)

and

(k) (k-i) 1k)
ii [c -s e.. 1 d~k

(k) - (k-1) + Jk) (5.4.2.4)
L i S S . j (ij

were the d.1(k) and d..(k) terms are the round-off errors incurred in performing the

multiplications and additions of the kth rotation computation. With this

formulation we see that the only way that the overall magnitude of the round-off

error grows in the Jacobi algorithm is through the effect of the d terms. Once

errors have occurred they can only be redistributed from element to element.
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The redistribution of errors is of concern only if the relatively large round-off

errors in the diagonal elements could be redistributed to the off-diagonal

elements by one rotation and then redistributed to other diagonal elements by

subsequent rotations. If this scenario were to occur then the round-off errors in

the diagonal elements could grow very rapidly. Observations c and d given

above above eliminate this possibility.

The primary way that round-off error is redistributed from off-diagonal to

diagonal elements or vice versa is if the angle is large so that its sine is large. In

the initial sweeps we may have large angles so we may have some redistribution

of round off errors. But the size of the errors being redistributed is small. As the
number of sweeps grows the angles get smaller. As they do, the redistribution of

errors decreases. With the cosine going to ±1 and the sine going to 0, equation

5.4.2.4 shows that the errors tend to stay where they are. That is

-"1ee"k1)1
eHj e i i [di]

(k) + (k) (5.4.2.5)- . J L J Ldii J

Additionally, since the error of the off-diagonal elements are small in relation to

the error in the diagonal elements, their impact on the diagonal error would be

small even if they were totally redistributed. That is, if the rotation worked

perfectly so that ;.ai was reduced to zero then, because of the norm preservation

property of the rotation, we would have

e(k) e (k1 ) ) 2 e (ki) )21/2  d (k) (5.4.2.6)
,, = i + ,

Since eij(kl) is small relative to e (k-), it will have little impact in this equation.
T o ci

Therefore we can say that
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e (k) = (k-1 + (k)
iI ieIi I I (5.4.2.7)

Based on the observations given above we are going to make the

assumption that the total round-off error for a diagonal element after N rotations

have been applied to it is given by

e(N) N -'. d(k) :,

k= 1 (5.4.2.8)

We will further assume that the dii are independent random variables with zero

mean and variance st2 .

With these assumptions we see that ei(N) is the sum of N independent

identically distributed random variables. The central limit theorem tells us that

eli(N) will be a Gaussian random variable. Since the dii terms are zero mean,

ei(N) will also be zero mean. The variance of ei(N) will be N times the variance of
the individual errors. Since e.i(N) is a Gaussian random variable, there is a 99%

chance that its magnitude will lie within 3 standard deviations of its mean. Hence

we expect

le(N)1  3 .N St (5.4.2.9)

In the Jacobi algorithm each element of the A matrix is involved in 2(n-1)

rotations during each sweep. If it takes s sweeps to reach convergence, then N =

2s(n-1) at convergence. Accordingly we can say that the total round-off error for

a diagonal element (ei), which is the round off error of singular value li, is

bounded by

bounded by = e()I - 32 1 st _ 1 st (5.4.2.10)

This shows that the error in the singular values should be O[,(ns)] which is a

I
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much lower dependence on n than that shown by the bounds developed in

Chapter 4. To determine the proportionality constant and the dependence on t

we must find expressions for st, the standard deviation of the error of a multiply

accumulate operation. This standard deviation is dependent on the type of

arithmetic used.

5.4.3 Statistical Bound for t-bit Fixed Point Arithmetic

For t-bit fixed point arithmetic the multiply accumulate operation has a

round-off error which is the sum of 2 independent errors each of which are

uniformly distributed on the range [-2(t+l), 2-(t+l)]. Accordingly

st= 2746 (5.4.3.1)

Therefore for t-bit fixed point arithmetic we can expect

2e(g)j = Fs 2 (5.4.3.2)

In comparison the Wilkinson analysis gives a bound of

2 -
le(g, i) : V s n 2t (5.4.3.3)

We see that the new bound is 0(n3/ 2 ) lower than the old bound. This is precisely

what we want since the old bound's dependence on n was too strong.

5.4.4 Statistical Bound for t-bit Fixed Point CORDIC Arithmetic

For t-bit fixed point CORDIC arithmetic the multiply accumulate operation

has a round-off error which is C (the CORDIC constant) times the sum of t

independent errors each of which are uniformly distributed on the range [-2

2 (t+1)]. Accordingly it can be shown that

N.-
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St C Jt 2/,- (5.4.4.1)

Therefore for t-bit, fixed point CORDIC arithmetic we can expect

le (g,)l -1 : 1 8s nt 2- -< ,]-nt 2-
S---- (5.4.4.2)

In comparison the old bound showed that
2 -t

le(g) < 2 s n t 2 (5.4.4.3)

We see that the new bound is O(n 3/2 t1/2 ) smaller than the old bound.

5.4.5 Statistical Bound for t-bit Floating Point Arithmetic i

To analyze the floating point case we must go back to basic principles. In

either a t-bit floating point add or multiply the errors are such that

fI(xop y) = (xop y) (1 + ) (5.4.5.1)

where Ie1 < 
2 -. Therefore, the multiply accumulate operation with round-off errors

included is given by

(k) (k-1) (k-1)
d(k) = [C 1 & .k +(1 + S Ai-1)(1 +F2)](1 + F) (5.4.5.2)

Expanding this equation and ignoring terms with products of errors we see that

-A I 3 + ca.
d : .. -S a I I (F1 3) - S d (F-2 + -3)  (5.4.5.3)

The assumptions given in section 5.4.1 show that as the Jacobi algorithm

progresses Icl - 1, s -+ 0, and Ai) - 0. Therefore the final term in the last

equation is negligible. The first two terms are just the normal products which

arise in the application of a rotation. The remaining term, the third one, can be

'-S

h



77

identified as dii(k). That is

(k) (k-1),, =CC~ (61I +  3) (5.4.5.4)

If we assume that the Ei are uniformly distributed on the range [-2 t , 2 t ] we

can show that each dii term is a zero mean random variable with standard

deviation given by

St 2 1 2 t / 1/3 (5.4.5.5)

Therefore e(li) is a sum of weighted independent random variables. By the

central limit theorem e(p.i) will be a Gaussian random variable with zero mean

and its variance will be the sum of the weighted variances of its components.

Unfortunately we do not know the weights so we can not compute the exact

variance of e(g.i). However since Icl - 1 and aii <IAIIF!! 1 we can say that

CAi (k-1) will be bounded by 1 and

St  ___ 2 x 2-t/ /3 (5.4.5.6)

Therefore for t-bit. floating point arithmetic we can expect

le( )l < r2 8  -Sn 2-t = 1 -

le g l : - 2 n 2(5.4.5.7)

By comparison the Wilkinson analysis bounds e(p4i) by

le(g)j _< 24 s n 2l  (5.4.5.8)

The new bound is O(4ln) smaller than the old bound.

5.4.6 Performance of the Statistical Bounds

Tables 5.4.6.1 through 5.4.6.3 show the performance of the new bounds in

comparison to the maximum error data provided in Tables 5.3.1 through 5.3.3

and the original theoretical bounds.
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Table 5.4.6.1 p

Statistical Bound for the Round-off Error of the Jacobi SVD Algorithm
With t-bit, Floating Point Arithmetic

bl =24sn2t b2 =F12s n 2 t

As a function of n (t - 23)

n s max Ie(Oi)I bl bl/max b2 b2/max

10 5 3.36e-06 1.43e-04 43 2.92e-06 0.87

20 6 4.81 e-06 3.43e-04 71 4.52e-06 0.94
30 7 6.77e-06 6.01 e-04 89 5.98e-06 0.88
40 7 7.25e-06 8.01e-04 110 6.91e-06 0.95
50 7 8.27e-06 1.00e-03 121 7.73e-06 0.93

As a function of t (n =20)

t s max le(pL)( bl bl/max b2 b2/max

15 6 1.27e-03 8.79e-02 69 1.16e-03 0.91
17 6 3.23e-04 2.20e-02 68 2.90e-04 0.90

19 6 8.25e-05 5.49e-03 67 7.24e-05 0.88
21 6 2.1Oe-05 1.37e-03 65 1.81 e-05 0.86
23 6 4.78e-06 3.43e-04 72 4.52e-06 0.95
25 6 1.18e-06 8.58e-05 73 1.13e-06 0.96
27 6 2.92e-07 2.15e-05 74 2.83e-07 0.97
29 6 6.71 e-08 5.36e-06 80 7.07e-08 1.05
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Table 5.4.6.2

Statistical Bound for the Round-off Error of the Jacobi SVD Algorithm
With t-bit, Fixed Point CORDIC Arithmetic

bl =2s n 2 t2t b2= /t2 t

As a function of n (t = 23)

n s max Ie(ltj)I bl bl/max b2 b2/max

10 5 3.18e-06 2.74e-03 862 4.04e-06 1.27
20 6 6.48e-06 1.32e-02 2030 6.26e-06 0.97
30 6 8.25e-06 2.96e-02 3591 7.67e-06 0.93
40 7 1.02e-05 6.14e-02 6035 9.57e-06 0.94
50 7 1.21 e-05 9.60e-02 7926 1.07e-05 0.88

As a function of t (n = 20)

t s max le(l )l bl bl/max b2 b2/max

15 5 1.29e-03 1.83e+00 1421 1.18e-03 0.92
17 5 2.91e-04 5.19e-01 1783 3.15e-04 1.08
19 5 8.71e-05 1.45e-01 1664 8.31e-05 0.95
21 6 2.15e-05 4.81 e-02 2237 2.39e-05 1.11
23 6 6.48e-06 1.32e-02 2030 6.26e-06 0.97
25 6 1.32e-06 3.58e-03 2712 1.63e-06 1.24
27 6 4.1Oe-07 9.66e-04 2353 4.24e-07 1.03
29 6 8.39e-08 2.59e-04 3089 1.1Oe-07 1.31

d .I
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Table 5.4.6.3

Statistical Bound for the Round-off Error of the Jacobi SVD Algorithm
With t-bit, Fixed Point Arithmetic

bl =,F -s 22-  b2= r -t "n2

As a function of n (t = 23)

n s max le(gi)l bl bl/max b2 b2/max

10 5 1.08e-06 8.43e-05 78 1.46e-06 1.35
20 6 2.03e-06 4.05e-04 199 2.26e-06 1.11
30 7 3.06e-06 1.06e-03 347 2.99e-06 0.98
40 7 2.61 e-06 1.89e-03 723 3.46e-06 1.32
50 7 3.12e-06 2.95e-03 946 3.86e-06 1.24

As a function of t (n = 20)

t S max le(gi)l bl bl/max b2 b2/max

15 4 5.1Oe-04 6.91e-02 135 4.73e-04 0.93
17 5 1.16e-04 2.16e-02 186 1.32e-04 1.14
19 5 2.65e-05 5.39e-03 204 3.30e-05 1.25
21 5 7.66e-06 1.35e-03 176 8.26e-06 1.08 -

23 5 2.01 e-06 3.37e-04 168 2.06e-06 1.03
25 5 5.53e-07 8.43e-05 152 5.16e-07 0.93
27 5 1.29e-07 2.1 le-05 163 1.29e-07 1.00
29 6 3.19e-08 6.32e-06 198 3.53e-08 1.11

,.
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We see that in all cases the new bounds are much tighter than the old ones.

We also see that the trends in the ratios between the old bounds and the

maximum errors have been eliminated by the new bounds. Some of the bound

to maximum values are slightly below one for the new bounds indicating that the

proportionality constants of the new error bounds are somewhat low. This is of

no concern because we will be taking base 2 logarithms of the error expressions

and rounding the results up to the next higher integer to compute the number of

bits needed in SVD arithmetic units. This process will more than compensate for

the slightly low proportionality constants. Accordingly we conclude that the

round-off errors of the singular values produced by the Jacobi algorithm are

bounded by:

le (4)l < 2sn 2-t, for floating point arithmetic (5.4.6.1a)

le()I 1 45J'3sn 2"t, forfixed point arithmetic (5.4.6.1 b)

le(la)I < f ni 2-, forfixed point CORDIC arithmetic (5.4.6.1c)

We will use these bounds in Chapter 7 to determine the number of bits needed

for arithmetic units used in Jacobi SVD arrays.
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6.0 ERROR BOUNDS FOR THE HESTENES SVD ALGORITHM

In Chapters 4 and 5 we computed error bounds for the round-off error of the

Jacobi SVD algorithm. In this chapter we will compute similar bounds for the I
Hestenes algorithm.

6.1 Theoretical, Wilkinson Style Bounds

In the exact Hestenes algorithm we post-multiply the A matrix by a series of

plane rotation matrices to produce the updated matrix H = U1. Therefore, we

can use the method used by Wilkinson [Wil65] to bound the round-off error in the

matrix (G) that is computed with finite precision arithmetic. We will ignore the

effect of computing approximate angles in our analysis since this source of error

is negligible in comparison to the error incurred in applying rotations. Since the

Hestenes algorithm can operate on rectangular matrices we will compute the

round-off error for an m-by-n matrix.

6.1.1 Wilkinson Bounds for Fixed Point and CORDIC Arithmetic

For fixed point arithmetic, when we apply a single rotation we update 2m

values in the A array. If the error in each term is bounded by E then the matrix of

errors (F) caused by the application of a single rotation satisfies

IIFIIF <  (6.1.1.1)

In the Hestenes algorithm, a total of n(n-1 )/2 rotations are applied in each sweep.

Thus G is computed by applying a total of N = s n(n-1)/2 rotations to A where s is

the number of sweeps required for convergence. Accordingly we expect the

error matrix (D) between the true H and the computed version to satisfy

82
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(n-l) s, :_ n2,'m" E (.1.2)
IIDIIF = IIH- GIIF < s n 2- (6.1.1

Note that if we compute the V matrix we would expect the error in V to satisfy the

same bound.

At this point we must make an assumption to proceed. In the Jacobi case,

the matrix that is produced is the I matrix so we can say something about the

errors in the singular values. For the Hestenes algorithm we do not produce X,

we produce G = U. To compute the singular values (gi) we use the formula

,= g, = llgi ,I for i= 1,2, ..., n (6.1.1.3)

However the bound given in equation 6.1.1.2 does not tell us what the size of the

error is in a particular element or vector of G. We can make progress if we

assume that the errors are uniformly distributed among the vectors of G.

Let's assume that gi = h + di where h. is the true vector (i.e. a, = IIh0112)

and di is the error vector. Therefore the error in singular value e(li±) = - I

satisfies

le(,)I = I Ilh, 112- 1Igi 1121 - lid, 112 (6.1.1.4)

If we assume a uniform error distribution we can say that the norm of the error

vector is bounded by

lid I1 - IF <  " 2 s(6 5 n

Combining equations 6.1.1.4 and 6.1.1.5 we see that the error in singular value

e(Ai) is bounded by

ji
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2C2 3 /2FMF-16

le( i)l < 2 3 - (6.1.1.6)

In the analysis of the Jacobi algorithm we showed that , = 2-t for t-bit fixed

point arithmetic. For t-bit fixed point CORDIC arithmetic e = [(7/6)t + 2]2 " .

Substituting these vaIes in for e in the equation 6.1.1.6 and simplifying the result

we see that

5 sn1FM 2t, fort-bit fixed point arithmetic (6.1.1.7a)

le(g i)I < s n31 / 'M" t 2t, for t-bit fixed point CORDIC arithmetic (6.1.1.7b)

Note that these bounds assume that no errors occur in the inner-product

computation shown in equation 6.1.1.3. However, this is not necessarily the

case. For example, if we use t-bit fixed point arithmetic to compute the inner

products the error that occurs in the inner product computation could be as large

as 4m 2t/2. This error is potentially much larger than the error incurred in

applying all of the rotations to the A matrix. To avoid this situation we will

assume that the SVD array returns the entire G matrix to the host processor

where the final inner product computations will be accomplished using floating

point or double length fixed point arithmetic. In the case of a CORDIC array, the

host (or another special purpose unit) must perform the final computations since

there is no easy way to compute inner products with CORDIC AUs.

6.1.2 Wilkinson Bound for Floating Point Arithmetic

For the floating point case we can use the development given in Wilkinson

for the application of a series of N rotations to matrix. Wilkinson shows [Wil65,
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pg 138] that the error in premultiplying an n-by-m matrix with N=n(n-1)/2

rotations is given by

IIAN -RNRNR...R1AIIF < x n312(1 + )2 IAII F  (6.1.2.1)

where AN is the true result and x is the error incurred in applying an approximate

rotation to a pair of elements. Wilkinson bounds x by 6 x 2- for t-bit floating point

arithmetic. As in the Jacobi analysis, this value is too small for the formulas

commonly used to compute rotation parameters for the Hestenes SVD. A value

of 12 x 2 - is more appropriate. Also as we showed in the Jacobi case, the term

(1 + x)2n-4 can be ignored since in any practical case it will be = 1.

The Wilkinson error bound is directly applicable to one sweep of the

Hestenes algorithm (if we compute the error in AN T rather than AN). If we have

normalized A so that IIAIIF <1 we see that after s sweeps we have G = AsN and

the error in the H matrix will be bounded by

IIDI IF 2 AR IF < 12 sn"/2"  (6.1.2.2)

Again assuming that the errors are uniformly distributed to the vectors of D, the

error in a singular value will be bounded by

Ie(g )j- 1 2sn 2t, fort-bit floating point arithmetic (6.1.2.3)

Note that there is no explicit dependence on the number (m) of rows in the matrix

in this formula. The dependence on m is implicitly covered by the IIAIIF term in

the Wilkinson error bound. We expect IJAIIF to increase with m. However, once

we have normalized the matrix so that IIAIIF < 1 the dependence on m is

eliminated.

,p
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6.2 Statistical Bounds for the Hestenes Algorithm r

Our simulation of the Jacobi algorithm showed the Wilkinson bounds to be

much too loose. By using an approximate statistical analysis we were able to

develop much tighter bounds which fit the experimental data well. We will use

the same type of approximate statistical analysis to bound the round-off error of

the Hestenes algorithm. To do so we will assume that the error characteristics of

the G matrix computed by the Hestenes algorithm are the same as those of the

updated A matrix produced by the Jacobi algorithm. Specifically:

a. For floating point arithmetic we will assume that the errors are relative to

the value of hij, i.e. gij = hij(1+ dij). Based on the Jacobi analysis, we will assume

that the dij are independent, normally distributed random variables with 0 mean

and variance 2 {N(0, 132)) where 31 = "q(6sn)2-t. (We assume that the variance

is one half that of the Jacobi algorithm since the Hestenes algorithm uses only

half the number of rotations.)

b. For fixed point arithmetic we will assume that the errors are absolute

errors, gii = hij+ dij, and that the dij are independent, N(O, p32) where 31 =

4(1.5sn)2-t.

c. For fixed point CORDIC arithmetic we will assume that the errors are

absolute errors, gij = hij+ dij, and that the d i are independent, N(0, 12) and that

313 = 4(0.5snt)2 "t.

6.2.1 Statistical Bounds for Floating Point Arithmetic

We want to compute

S hjThj fori =i, ' , (6.2.1.1)

Instead we compute

"4-

A - A A A -~ A
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=1  for j= 1,2, ... , n (6.2.1.2)

We want to analyze the error e(g~) = aj - .j. However, the square roots make it

very difficult to analyze gj and oj directly. Therefore we will look at the square of

these quantities.

From the definition of gij for floating point arithmetic, we see that

g1 = (Im + D) hi  (6.2.1.3)

where D = diag(dlj, d2j, ..., dmi). Accordingly

2 T T T T T 2
= gjgj = h (Im+D)(Im+D)h j =h hj+2h mDh.+hTD h.

2 T T 2= +2 h.TDh. +h.TD h. (6.2.1.4)
j J J J J

or, expanding the vector-matrix-vector products into sums,

m m
2 + 2 h dij + h d 2

9ii Oi =1 (6.2.1.5)

We see that the error in I.j2 is made up of two components.

The first is 2h.TDh . Note that since we have assumed that the dij are all

N(O, 132), then this term will be a weighted sum of normally distributed random

variables. It will have a mean of 0 and a variance of 412 times the sum of the

squares of the weights. That is

en m
var[2hOh.] = 42 h. < 4p2 h.. = 4p2 2

i 1 -_ ii 'i j (6.2.1.6)

So 2h TDh is approximate!y N(0 4p3202) Its standard deviatin is = 2j3c

Therefore 99% of the possible values of 2h.TDhj will lie within 3 standard

deviations of its mean or, equivalently, in the range [-6paj, 6p3aj].
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The second component of the error in .iL2 is hjTD2h . Since each of the dij is

N(O, 32), dij2 is a chi-squared random variable with mean p2 and variance 2p 4 .

Therefore hjTD 2 h. is a weighted sum of chi-squared random variables. It is easy

to show that its mean is a*2p2 and its variance is 2a204 4 . Therefore, the

magnitude of this component will be O(aj2J2). As a result we see that this term

will be negligible in comparison to the 2hTDhj term which is O(13j).

So ignoring the h.TD 2 h term we see that

2J < 2i + 60 a.i (6.2.1.7)j, - Ii

Since gj2 satisfies this equation we can add any positive number to the right hand

side and the equation will still be satisfied. So let's add the number 9032 to obtain

2 2 61 L2 2 "
2 < 2 + =(aj.+31) 2  (6.2.1.8)

Therefore

i < a +3 3 (6.2.1.9)

and

le(pi)I = 1g- -- 3 P (6.2.1.10)

We see that e(4j) will be O(3). By assumption 33 = /(6sn)2 "t so we expect

e( )I 6s n 2t, forfloating point arithmetic (6.2.1.11)

N.
I.



6.2.2 Statistical Bounas for Fixed Point and CORDIC Arithmetic

From the definition of gij for fixed point arithmetic, we see that ",

gj = h j + d (6.2.2.1),.

where dj = (dl, d2j, ..., dmj)T. Accordingly

'j =j gJ = (h + dj)h + d) =j hhj + 2hjd + dj dj

+2h S B d d (6.2.2.2)

Expanding the vector products into sums
m m

wher = ( 11, 21, .. ~ mj)T Accodigl

2 2

+ 1 .+ .. +d (6.2.2.3)

we see that the error in l.j2 is made up of two components. The first, 2h .Tdj, is a

cross term between the true h, vector and its associated error vector di. Note

that since we have assumed that the dij are all N(O, 132), then this cross term will

be a weighted sum of normally distributed random variables. It will have a mean

of 0 and a variance of 4p2 times the sum of the squares of the weights. In this

case the weights are the elements of hj and the sum of their squares is aj2. That

is, 2h.Td is N(0, 4p2 2) and its standard deviation is 2pa . Therefore 99% of the

possible values of 2h.Tdj will lie in the range [-613aj, 6pcj].
The second component of the error in g-2 is d.Td . Since each of the dij is

N(O, 132), each element of d*j2 is a chi-squared random variable with mean p2 and

variance 2p 4 . Therefore djTd is a chi-squared random variable with m degrees

of freedom. It will have mean mp2 and variance 2mp34 . Approximately 99% of the

possible values of djTdj will lie in the range [0, 2m p2].

From the characteristics of the two error terms we can see that unless the

] k
"

L
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singular value being computed is very small, the cross term will dominate. For

very small singular values the d.Tdi can dominate but the magnitude of both error

terms will be very small. If we ignore the d.Td. term we see that

2 <2
9j - q2 + 6paj (6.2.2.4)

This is exactly the same relationship we found for floating point arithmetic in

section 6.2.1. Therefore we can conclude that

le(g..)I = Igi- - 1 -< 3P (6.2.2.5)

Using the assumptions that 303 = 4(1.5sn)2 -t for fixed point arithmetic and

'1(0.5snt)2-t for fixed point arithmetic CORDIC arithmetic we can conclude that

e)I -< ,11.5 s n 2', for fixed point arithmetic (6.2.2.6)

le ( )I 1 0.5 s n t 2- for fixed point CORDIC arithmetic (6.2.2.7)

6.3 Summary of Hestenes Bounds

The bounds computed in section 6.2.1 and 6.2.2 are summarized below.

Theoretical Bounds

e(gi)I < 12 s n 2 t, fort-bitfloating pointarithmetic (6.3.1a)

2 ( 2', fort-bit fixed point arithmetic (6.3.1 b)

le(pi)l < 5- sn 3 2vF" t 2t, fort-bit fixed point CORDIC arithmetic (6.3.1c)

n.s

) ,-
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Statistical Bounds

e ) / < - 2 t fort-bit floatng point arithmetic (6.3.2a)

le( ,)l -< T.5s n 2t, fort-bit fixed point arithmetic (6.3.2b)

le(g) I < :f0.5sn t 2t , for t-bit fixed point CORDIC arithmetic (6.3.2c)

6.4 Simulation of the Hestenes Algorithm

We performed a series of computer simulations of the Hestenes algorithm,

similar to the simulations of the Jacobi algorithm, using floating point, fixed point

and CORDIC arithmetic. In this section we described the simulation programs

and their results.

6.4.1 Simulation Programs

The specific version of the Hestenes algorithm used in the simulations is

shown in Figure 6.4.1.1. The algorithm operates on an m-by-n matrix, A. During

each sweep of the algorithm all n(n-1)/2 column pairs are orthogonalized.

Sweeps are performed until the measure "off" falls below a preset threshold,

"delta", or until a "maxsweeps" limit is reached. Once the A matrix has been

orthogonalized the singular values are computed by finding A's column norms.

The Hestenes algorithm was implemented using the same basic functions

that were used in the Jacobi simulation. The only additions were functions to

compute column inner products. A t-bit, floating point inner product routine was

used in the floating point simulation and a t-bit, fixed point inner product routine

was used in both the fixed point and CORDIC simulation. As shown at the end of

section 6.1.1, the final inner products computations needed to compute the

.5
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Off = 1  akiakj
i=1 j W

maxsweeps = 10
sweeps = 0
delta = 1.0e-24 * off
while (off > delta and sweeps:5 maxsweeps) do

for i =1,2,..., n-1
for 41 ... , n

T T T -
ri = aiai; r. aja.; g= aia

r. -r

2g

sign(w)t VF 
',2

Iwl+ 1+w2

1

S = c t
for k=l 2, m,

c 1
I aki akj] = aki akji

end {for i and j}

off = aki aki=1 j=i+lL W~ J,2'

sweeps = sweeps + 1
end { while }
for i=1,2,..., n

T °

4:7 a,

Figure 6.4.1.1: Hestenes SVD algorithm used in the simulation
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singular values should not be performed with t-bit fixed point arithmetic. In our

simulations the singular values were computed with double precision inner

products.

For the Hestenes algorithm we computed the error in the singular values as

a function of n, m and t. We varied n from 10 to 50 while holding m constant at

50 and t constant at 23. The value of m was allowed to range from 20 to 100

while n was held at 20 and t at 23. Finally t was varied from 15 to 29 while m and

n were held at 50 and 20, respectivel\ For each set of variables a sufficient

number of matrices were processed to generate a sample size of approximately

200 singular values.

6.4.2 Simulation Results

The results of the Hestenes simulations are shown in Tables 6.4.2.1 through

6.4.2.3. Each of the tables has three separate sections, one each to display the

error data as a function of m, n and t. Each section shows the maximum error in

the singular values, the theoretical and statistical bounds and the bound to

maximum (b/m) ratios.

As was the case for the Jacobi algorithm, all three tables show that the

Wilkinson style theoretical bounds are much too high. For all three types of

arithmetic these bounds are too strongly related to n and m. For the CORDIC

arithmetic, the theoretical bound is also too strongly related to t. The statistical

bounds are much tighter and the ratios between these bounds and the maximum

error show no significant trends. Therefore the functional relationships of the

statistical bounds to m, n and t appears to be correct.

The proportionality constants of the statistical bounds for the floating point

and fixed point cases were somewhat off. Table 6.4.2.1 shows that the statistical
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Table 6.4.2.1

Round-off Error of the Hestenes SVD Algorithm
With t-bit, Floating Point Arithmetict]

bl = 12sn2t b2 = rn 2t b3 =s n 2- t

As a function of n (t = 23, m = 50)

n s max le(gi)l bl bl/m b2 b2/m b3 b3/m
10 5 6.46e-07 7.15e-05 111 2.06e-06 3.20 8.43e-07 1.31
20 6 1.21e-06 1.72e-04 142 3.20e-06 2.64 1.31e-06 1.08
30 6 1.35e-06 2.57e-04 190 3.92e-06 2.90 1.60e-06 1.18
40 7 1.81e-06 4.01e-04 222 4.89e-06 2.70 1.99e-06 1.10
50 7 1.99e-06 5.01e-04 251 5.46e-06 2.74 2.23e-06 1.12

As a function of m (t = 23, n = 20)

m s max Le(g.i)I bl blm b2 b2/m b3 b3/m
20 6 1.20e-06 1.72e-04 143 3.20e-06 2.66 1.31e-06 1.08
40 6 1.23e-06 1.72e-04 140 3.20e-06 2.59 1.31e-06 1.06
60 6 1.21e-06 1.72e-04 142 3.20e-06 2.65 1.31e-06 1.08
80 6 1.20e-06 1.72e-04 143 3.20e-06 2.67 1.31e-06 1.09

100 6 8.48e-07 1.72e-04 202 3.20e-06 3.77 1.31 e-06 1.54

As a function of t (m = 50, n =20)

t s max le(p1 )j bl bl/m b2 b2/m b3 b3/m
15 5 2.57e-04 3.66e-02 143 7.48e-04 2.91 3.05e-04 1.19
17 5 6.40e-05 9.16e-03 143 1.87e-04 2.92 7.63e-05 1.19
19 5 1.64e-05 2.29e-03 140 4.67e-05 2.85 1.91e-05 1.16
21 6 4.29e-06 6.87e-04 160 1.28e-05 2.99 5.22e-06 1.22
23 6 9.92e-07 1.72e-04 173 3.20e-06 3.22 1.31e-06 1.32
25 6 2.17e-07 4.29e-05 197 8.00e-07 3.68 3.26e-07 1.50
27 6 5.89e-08 1.07e-05 182 2.00e-07 3.39 8.16e-08 1.39
29 6 1.93e-08 2.68e-06 139 5.00e-08 2.59 2.04e-08 1.06

,I



Table 6.4.2.2

Round-off Error of the Hestenes SVD Algorithm
With t-bit, Fixed Point CORDIC Arithmetic

bl =.-sn 3/2Mt2t b2= F 2t,.
6

As a function of n (t = 23, m = 50)

n s max Ie( 1)I bl bl/m b2 b2/m
10 4 1.65e-06 2.04e-03 1240 -2.56e-06 1.55
20 5 2.58e-06 7.23e-03 2802 4.04e-06 1.57
30 5 3.70e-06 1.33e-02 3588 4.95e-06 1.34
40 6 3.45e-06 2.45e-02 7106 6.26e-06 1.81
50 6 4.44e-06 3.43e-02 7716 7.00e-06 1.58

As a function of m (t =23, n =20)

m s Max le(.L) bl bl/m b2 b2/m
20 5 2.87e-06 4.57e-03 1593 4.04e-06 1.41
40 5 3.09e-06 6.46e-03 2088 4.04e-06 1.31
60 5 2.50e-06 7.91 e-03 3161 4.04e-06 1.61
80 5 2.80e-06 9.14e-03 3260 4.04e-06 1.44

100 5 2.58e-06 1.02e-02 3963 4.04e-06 1.57

As a function of t (m=50, n=20)

t s max le(l.i)I bl bl/m b2 b2/m
15 3 5.89e-03 7.24e-01 123 6.47e-04 0.11
17 4 3.59e-04 2.73e-01 762 1.99e-04 0.55
19 4 4.61 e-05 7.64e-02 1657 5.26e-05 1.14
21 5 7.82e-06 2.64e-02 3375 1.55e-05 1.98
23 5 3.09e-06 7.23e-03 2335 4.04e-06 1.31
25 5 6.81 e-07 1.96e-03 2884 1.05e-06 1.55
27 6 1.65e-07 6.36e-04 3847 3.00e-07 1.81
29 6 5.78e-08 1.71 e-04 2957 7.77e-08 1.35

,"*",-.'. -:' :> ; .:-¢, ' .- :.-,'-,' - '- - ' , "' ' " ',: "-", ,' ' " ' " " " " '' ' -- q ""
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Table 6.4.2.3

Round-off Error of the Hestenes SVID Algorithm
With t-bit, Fixed Point Arithmetic

bl= sn31 M/2 2 ~ b2 =rl.5sn2t b3 =.,rfin2t

As a function of n (t = 23, m =50)

n s max Ie@1)I bi bl m b2 b2/m b3 b3/m
10 5 1.46e-06 9.42e-05 65 1.03e-06 0.71 1.46e-06 1.00
20 6 2.10Oe-06 3.20e-04 152 1.60e-06 0.76 2.26e-06 1.08
30 6 2.98e-06 5.88e-04 197 1.96e-06 0.66 2.77e-06 0.93
40 7 3.15e-06 1.06e-03j 335 2.44e-06 0.78 3.46e-06 1.10
50 7 4.829-06 1 .48e-03 306 2.73e-06 0.57 3.86e-06 0.80

As a function of m (t = 23, n = 20)

m s max Ie(gx,)I bi bl m b2 b2/m b3 b3/m
20 5 1.86e-06 1.69e-04 91 1.46e-06 0.79 2.06e-06 1.11
40 5 1.78e-06 2.38e-04 134 1.46e-06 0.82 2.06e-06 1.16
60 5 1.90e-06 2.92e-04 154 1.46e-06 0.77 2.06e-06 1.09
80 5 2.08e-06 3.37e-04 162 1.46e-06 0.70 2.06e-06 0.99

100 5 2.1 7e-06 3.77e-04 174 1.46e-06 0.67 2.06e-06 0.95

As a function of t (m = 50, n = 20)

ts max le(g1)l b1 bl/m b2 b2/m b3 b3/m
15 4 5.84e-04 5.46e-02 94 3.34e-04 0.57 4.73e-04 0.81
17 5 1.35e-04 1.719-02 126 9.34e-05 0.69 1.32e-04 0.98
19 5 3.629-05 4.26e-03 118 2.34e-05 0.65 3.30e-05 0.91
21 5 9.15e-06 1.07e-03 117 5.84e-06 0.64 8.26e-06 0.90
23 5 1.87e-06 2.67e-04 143 1.46e-06 0.78 2.06e-06 1.11
25 6 4.66e-07 8.00e-05 172 4.00e-07 0.86 5.65e-07 1.21
27 6 1. 14e-07 2.00e-05 176 1.00e-07 0.88 1.41 e-07 1.24
29 6 2.45e-08 5.00e-06 204 2.50e-08 1.02 3.53e-08 1.45

%4
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bound (b2) is consistently high by a factor of 2.5 to 3 for the floating point

simulation. That is, the computed errors are about 2.5 to 3 times lower than

expected. We found that by eliminating the constant factor of 46 from the

statistical bound we obtained a very close match to the maximum error values

over the full range of m, n and t. This gives a revised bound of 4(sn)2 °t for the

floating point errors. Column b2 of Table 6.4.2.3 shows that the statistical bound

for the fixed point Hestenes algorithm is low by a factor of 1.2 to 1.5. In this case

we found that doubling the factor of 1.5 inside the square root of the bound

produced a better bound. This gives a revised bound of 4(3sn)2 -t for the fixed

point errors. Data for the revised bounds are given in the column labelled b3 in

both Table 6.4.2.1 and 6.4.2.3. We do not have any specific rationale for these

changes in the proportionality constants. We will see in the next chapter that

when we compute the number of bits needed for SVD AUs, such small changes

in the proportionality constant are insignificant since we will be taking logarithms

of the proportionality constants.

) b



7.0 NUMBER OF BITS REQUIRED FOR SVD ARITHMETIC UNITS

In this chapter we will combine the results of Chapters 3, 4, 5 and 6 to

develop formulas for the number of bits (t) needed in the arithmetic units of SVD

processors. Our objective is to insure that the arithmetic error does not corrupt

the singular values. That is, we want to determine the value of t that will

guarantee that the maximum error incurred in the computations is no greater than

the quantization error already inherent in the singular values.

7.1 Summary of Errors in SVD Algorithms

In this section we summarize the formulas we have developed for the size of

the quantization error and the round-off error for the singular values of a

quantized data matrix.

We were able to show in Section 3.2.3 that the variance of the singular

values [s2(gi)) of a matrix of (b+l)-bit quantized data values satisfies

2 2
Sb (7.1.1)

where
Sb 2 =- 2-2b/1 2

This formula was developed under the assumption that 1aij < 1 for all i, j. In

Chapter 4 we found it necessary to normalize the aij so that IIAIIF < 1. This can

be accomplished by dividing all aij by ,q(mn) for a rectangular matrix (or by n for a

square matrix). If we do so the variance of the scaled singular values will be

1/mn times the original variance. Therefore, the standard deviation [s(pLi)] of the

scaled singular values is given by

98
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-b
s(A j) fo nmbynmti (7.1.2a)

s(g j) = 2 for an n-by-n matrix (7.1 .2b)
jrIT2n

In Chapter 5 we established the following bounds on the round off errors

[e(pgj)] in the singular values for the Jacobi algorithm using t-bit arithmetic

Ie(p,)I 1 j5 1 -s 2-t for t-bit floating point arithmetic (7.1.3a)

je~lL)I s sn 2 't for t-bit fixed point CORDIC arithmetic (7.1.3b)

IeGi1)l 5 r3J Ts 2't for t-bit fixed point arithmetic (7.1.3c)

In Chapter 6 we found the following bounds on the round off errors for the

Hestenes algorithm

_t~ 2  for floating point arithmetic(71.a

1elL14 _n/ - for t-bit fixed point CORDIC arithmetic (7.1 .4b)

Ie( ) L 5T for t-bit fixed point arithmetic (7.1.4c)

- -p . , . . . . .Aft N
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7.2 Number of Bits Needed in SVD Systems

To establish the number of bits needed in an SVD system, we will insist only

that the round-off error bound be equal to the standard deviation of the

quantization noise. That is we want le(gi)I = s(gi). This criterion will insure that in

the average case the round-off error will be several times less than the

quantization error.

Equating the expressions for Je(lLi)l and s(l. j) given above and solving them

for t we obtain the following formulas fort

For the Jacobi SVD of an n-by-n matrix of (b+l)-bit guantized data

t = b + 1.5 Iog 2 (n) + 0.5 Iog 2 (s) + 3.6 (7.2.1a)

tfx= b + 1.5 Iog2(n) + 0.5 Iog2 (s) + 2.6 (7.2.1b)

t = b + 1.5 Iog2(n) + 0.5 Iog2(s) + 0.5 Iog2(tco) + 1.8
C 0 ~ g2 OVS)(7.2.1 c)

where the subscripts indicate the type of arithmetic.

For the Hestenes SVD of an m-by-n matrix of (b+l !-bit quantized data

t = b + Iog2(n) + 0.5 Iog2(s m) + 1 .8 (7.2.2a)

fx  b + Iog 2 (n) + 0.5 Iog 2(s m) + 2.6 (7.2.2b)

t b + Iog2 (n) + 0.5 tog2(s m) + 0.5 1og 2(t c) + 1.3 (7.2.2c)

These equations show that the number of bits is directly related to b and

logarithmically related to s, n, and m. The CORDIC equations, 7.2.1c and 7.2.2c,

Ma 
I



101

include an additional log(t) term on the right hand side to account for the t shifts
and adds performed in each CORDIC OP. Finally each equation has a constant

term which is the base two log of 4#12 (from the quantization error expression)

times the proportionality constant of the round-off error bound. If we let m = n in

the Hestenes equations we see that the formulas are exactly the same as the

Jacobi equations except the constant terms for the floating point and CORDIC

arithmetic are lower Therefore we see that the number of bits for the Jacobi and

Hestenes algorithms (processing square arrays).differ by at most 2 bits.

To obtain expressions for the total number of bits needed to compute the

SVD, we must round the values of t generated by equations 7.2.1 and 7.2.2 to

the next higher integer and add one bit for the sign. For the floating point AUs,

we must also add bits for the exponent. We will assume that a single 8-bit byte is

allocated to the floating point exponent. Accordingly, the word size (w) needed in

the SVD AUs is given by

wi =Ftf1 1+9 (7.2.3a)

Wfix -F t. 1+1 (7.2.3b)

wo ='tQ+i (7.2.3c)

Note that the word size we are computing here is the number of bits that we
must use to store data values and transmit them between arithmetic units. The

number of bits needed in some portions of the arithmetic units themselves will be

higher since we have assumed that the arithmetic operations will produced

correctly rounded results. We are not concerned with the additional bits needed

for rounding operations since this extra hardware is standard in most of the ALU

and multiplier chips which are available today. The characteristic that drives the
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design and size of such chips is the number of bits in the input and output words.

The w values given by equation 7.2.3 are the number of bits which must be

accepted and produced by an AU.

We have computed values of wfl, wo and wfix for the Jacobi algorithm for

various values of n and b. We chose b = 8, 15, or 23 to represent common

signal p ,cessing applications such as the 8-bit unsigned integers of image

processing and the 16 or 24-bit signed values generated in seismic or

hydroacoustic systems. The results are given in Table 7.2.1.

The table shows that fixed point AUs require the fewest number of bits. The

number of bits needed for the fixed point AUs is 9 bits less than the number

needed for floating point AUs over the full range of b and n. This difference is

equal to the number of bits that have been allocated to the floating point

exponent plus 1 additional bit for the higher round-off error of the floating point

AUs. In effect the table shows that once the matrix has been properly normalized

to prevent overflow, it is perfectly feasible to use fixed point adders and

multipliers in Jacobi SVD arrays. However, this conclusion only applies to the

AUs used to apply rotations. Our fixed point Jacobi programs did not simulate

the impact of using fixed point arithmetic in the processors which compute

rotations. Nevertheless, this is a significant result since we will see that in all

SVD architectures proposed to date the AUs used to apply rotations far

outnumber the AUs which compute rotations.

The table also shows that CORDIC fixed point AUs require only one or two

bits more than fixed point units. For example if we are processing 16-bit signed

data from an array of 20 sensors, the table shows that we need 28-bit fixed point

CORDIC AUs, 27-bit fixed point AUs and 36-bit floating point AUs. If we are

finding the SVD of a 1000-by-1 000 array of 8-bit image samples we need 30 bits

for CORDIC arithmetic, 29 bits for fixed point and 38 bits for floating point.
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Table 7.2.1

Number of Bits Required for Jacobi SVD Arithmetic Units

b =8 b= 15 b = 23

n s WfI WCo Wfix Wfl Wco Wfix WfI Wco Wfix
20 6 29 21 20 36 28 27 44 37 35
30 6 30 22 21 37 29 28 45 38 36
40 7 30 23 21 37 30 28 45 38 36
50 7 31 23 22 38 31 29 46 39 37
60 7 31 24 22 38 31 29 46 39 37
70 8 32 24 23 39 31 30 47 40 38
80 8 32 25 23 39 32 30 47 40 38
90 8 32 25 23 39 32 30 47 40 38
100 8 33 25 24 40 32 31 48 40 39
120 8 33 25 24 40 33 31 48 41 39
140 9 33 26 24 40 33 31 48 41 39

160 9 34 26 25 41 33 32 49 42 40
180 9 34 26 25 41 34 32 49 42 40
200 9 34 27 25 41 34 32 49 42 40
250 9 35 27 26 42 34 33 50 43 41
300 10 35 28 26 42 35 33 50 43 41
400 10 36 28 27 43 35 34 51 44 42
500 10 36 29 27 43 36 34 51 44 42
600 10 37 29 28 44 36 35 52 45 43
700 11 37 30 28 44 37 35 52 45 43
800 11 37 30 28 44 37 35 52 45 43
900 11 38 30 29 45 37 36 53 45 44
1000 11 38 30 29 45 38 36 53 46 44
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Finally, the table shows that for typical SVD applications we need fairly large

words to compute singular values accurately with the Jacobi algorithm. For

example the chart shows that currently available 32-bit floating point processors

will be adequate only for small arrays (n < 100) of 8-bit data. To process full

images which typically contain more than 1000-by-1000 pixels we will need 38-bit

floating point AUs. In order to process 100-by-1 00 arrays of 16-bit data we will

need 40-bit floating point AUs or 32 bit CORDIC AUs. However we could use

32-bit fixed point AUs in the off-diagonal elements of arrays designed to handle

1000-by-1000 arrays of 8-bit, image data or 200-by-200 arrays of 16-bit seismic

data.

For the Hestenes algorithm we have computed values of wfl, Wco and wfix for

various values of n, m and b. The results are given in Table 7.2.2. The number

of bits does not change very rapidly with m since the dependence on m is

10g 2 (4m). Accordingly we have computed the number of bits for only two values

of m, 200 and 1000, while holding b constant at 15. Since the number of bits is

directly related to b we give data for only two values of b, 8 and 15, while holding

m constant at 200. The value of n ranges from 20 up to m.

Table 7.2.2 supports the exact same conclusions for the Hestenes algorithm

as Table 7.2.1 does for the Jacobi algorithm. Over the full range of n, m and b

fixed point arithmetic requires the fewest number of bits, CORDIC needs one or

two bits more and floating point requires the most. However the difference

between the floating point and fixed point words for the Hestenes algorithm are

not as large as the difference for the Jacobi algorithm. The difference between

the floating point and fixed point columns of Table 7.2.2 is consistently 7 bits. For

the Jacobi algorithm the difference was 9 bits. The reduction results from the

lower round-off error of the floating point Hestenes algorithm. Our simulations

! ...
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Table 7.2.2

Number of Bits Required for Hestenes SVD Arithmetic Units

b=8 b=15 b=15

m = 200 m = 200 m = 1000

n s Wfi Wo Wfix Wfl Wco Wf ix Wfl Wco Wf ix
20 6 29 22 21 36 30 29 37 31 30
30 7 29 23 22 36 30 29 38 32 30
40 7 30 24 23 37 31 30 38 32 31
50 7 30 24 23 37 31 30 38 32 31
60 7 30 24 23 37 31 30 39 33 31
70 8 31 25 24 38 32 31 39 33 32
80 8 31 25 24 38 32 31 39 33 32
90 8 31 25 24 38 32 31 39 33 32
100 8 31 25 24 38 32 31 39 33 32
120 8 32 25 24 39 32 31 40 34 32
140 8 32 26 25 39 33 32 40 34 33
160 8 32 26 25 39 33 32 40 34 33
180 9 32 26 25 39 33 32 40 34 33
200 9 32 26 25 39 33 32 41 35 33
250 9 41 35 34
300 9 41 35 34
400 10 42 36 34
500 10 42 36 35
600 10 42 36 35
700 10 42 36 35800 10 43 37 35
900 10 43 37 36
1000 11 43 37 36

; .
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show it to be 4i12 less than the error of the Jacobi algorithm while the error for

fixed point arithmetic is the same for both algorithms.

In conclusion tables 7.2.1 and 7.2.2 show that CORDIC and fixed point

arithmetic can be used very effectively in SVD computations if the data matrix is

properly scaled to prevent overflows. The CORDIC and fixed point AUs actually

require fewer bits than floating point AUs. In effect the initial scaling of the data

matrix eliminates the need for the exponent of the floating point AUs.

In the next few chapters we will look at specific SVD architectures and how

we can use floating point, fixed point and CORDIC AUs in them.

or
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8.0 ARCHITECTURES FOR VLSI, SVD PROCESSORS

Several different architectures have been proposed to compute the SVD

using multiprocessor arrays. In the following sections, five different architectures

will be described. Two of the them fall into the category of "linear" arrays. That

is, the number of processors in the array grows as a linear function of the number

of columns in the original A matrix [number of processors = O(n)]. The other

three designs are "quadratic" arrays. For these architectures the number of

processors grows as a product of the number of rows and columns in the matrix

[number of processors = O(mn)].

In order to simplify the discussion of the architectures, it will be assumed

that the A matrix is square (m=n). (In fact two of the quadratic arrays will only

handle square matrices.) This assumption is not a severe limitation. The SVD of

a rectangular matrix can be found by first computing its QR factorization

A 0 (8.0.1)

where R is n-by-n and upper triangular. Then the SVD of R can be computed.

WTRv = = diag(a ... , n) (8.0.2)

If we define U as follows

U = QU0 J (8.0.3)
we see that the SVD of A is given by UTAV = diag(o ... n) [Bre85a].

8.1 The Moreno Pipelined SVD Architecture

In his Masters thesis [Mor85], Jaime Moreno performed a thorough analysis

of the computations required to perform the SVD. Based on this analysis he

107
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developed a highly pipelined architecture for the Hestenes SVD algorithm. A

simplified top level flow diagram for the architecture appears in Figure 8.1.1. The

processor consists of four pipelined stages; an inner product unit, a rotation angle

computation unit, a rotation application unit and a column exchange unit. Each of

the stages is in turn composed of pipelines of individual arithmetic units. The

substructures are shown in Figure 8.1.2. The inner product unit is constructed

from a binary tree with multipliers at the leaves and adders at the internal nodes.

The rotation application unit is a large linear array of parallel multiplier-multiplier-

adder (MMA) structures. The rotation angle computation stage is just a straight

pipeline of arithmetic units. (The divisions and square roots are accomplished

using iterative algorithms implemented with multipliers and adders.) The column

exchange unit is a hardwired interconnection network which implements the

round robin ordering scheme. Moreno shows how the number of arithmetic units

in each stage can be varied so that the throughput rate of all stages is matched.

By using one of the processors shown in Figure 8.1.1 or several of them in

parallel, Moreno creates a whole family of SVD processors which can be tailored

to meet specific throughput and hardware size requirements.

Moreno's design has several undesirable features for VLSI implementation.

First, the design is irregular, especially the rotation computation unit. Second,

the design does not scale directly as the size of the input matrix *ncreases. For

each value of m, a different number of arithmetic units is needed in the pipeline to

attain optimum throughput. However, the number of arithmetic units is not simply

related to m, especially for matrices with 150 or fewer rows. Finally, the design

requires the rotation parameters to be broadcast to the potentially large linear

array of arithmetic units in the rotation application unit.

.7- -7%~
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Figure 8.1.1: Moreno Pipelined SVD Architecture [Mor85]
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8.2 The Schimmel/Luk Linear Systolic Architecture II

David Schimmel and Franklin Luk have proposed [Sch86a] an SVD

architecture which on the surface is very similar to the Moreno design (see Figure

8.2.1). It too implements the Hestenes algorithm, but it uses the odd-even

ordering scheme for generating rotation pairings. It also has an inner product

unit, a rotation angle computation unit and a rotation application unit (matrix

multiplier). However, the detailed designs of the stages are quite different (see

Figure 8.2.2). For example the inner product unit is a linear systolic array of

multiply accumulate cells. The rotation angle computation unit is essentially

identical to that of Moreno since it is also implemented as a pipeline of arithmetic

units.

The heart of the Schimmel/Luk design is the matrix multiplication unit. This

unit simultaneously applies the rotations and performs the column exchange

function. The basis for its design is the observation that the rotations and the

column exchanges can be performed by postmultiplying the A matrix (and, if

required, the V matrix) by a tridiagonal matrix of rotation parameters. Therefore

the rotation application unit consists of three rows of multiply accumulate cells

which perform this matrix multiplication.

The Schimmel/Luk architecture is well suited to VLSI implementation. The

matrix multiplication and the inner product units are composed of regular arrays

of identical multiply accumulate cells. The architecture requires only local

interconnections. The design scales directly with m, the number of rows of the

data matrix. It has no dependence on n. The only complicated part of the design

is the rotation computation unit. However, there is only one of them and its

design is the same for any size matrix.

p"
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Figure 8.2.1: Schimmel / Luk SVD machine [Sch86a]



114

a
55

a a
45 54

a a4  a
35 4453

a 25  a 34  a3 a 52

aa a a aa

a.C 14C

Figure 8a22=:Mti mullcto nt~c8

CC4~. a
r.W C 14 2vr~w 23 r rrr 1 32 .



115 1

a
55

a a
a 45  a54

a35 44 53
a 25a a4435

a 52 5 34 52
a 14a 23a 324

35 24 51

ro..



116

Co *4D

(0

cu

cf-c

CL

CD

cl",

CMC

cz~



I UT&A W7 M 177 X, &~ T iL'K f V. r. I V V W V ' P"Q-7 n.-. .r. r -zA.r'3"A T, WK VW WN h ' . '

117
I-

8.3 The Brent/Luk/Van Loan (BLV) Mesh Connected Array

Richard Brent, Franklin Luk and Charles Van Loan have proposed a mesh

of processors to implement the Jacobi SVD algorithm [Bre85a]. The architecture

is depicted in Figure 8.3.1. It consists of an n/2-by-n/2 array of processors each

of which is connected to its eight nearest neighbors. Each of the processors

contains a 2-by-2 submatrix of the data matrix. The design is only defined for

square data matrices.

In operation, each diagonal processor generates rotations which annihilate

the off diagonal elements of its 2-by-2 submatrix (as in Figure 8.3.1). Eacn

diagonal processor then transmits one set of rotation parameters up and down its

column using the vertical mesh connections and the other set across its row

using the horizontal connections. On receiving the appropriate rotation

parameters, each of the off-diagonal processors applies them to its 2-by-2

submatrix (as in Figure 8.3.1). Following the application of the rotations, the

processors exchange data elements in a round robin pattern in both the vertical

and horizontal directions using the diagonal mesh connections. While each of

these steps is described as a separate action, in actual operation the steps

overlap so that every processor is active every third time step (see [Bre85a] for

details). On completion, every diagonal cell holds a pair of singular values and

every cell contains 2-by-2 submatrices of U and V.

This design is well suited for large scale integration due to its highly regular

structure and nearest neighbor connections. The design requires two distinctly

different processor types; a complex diagonal processor to compute rotations

and a very simple off-diagonal processor to apply rotations. This particular

architecture is probably best suited for wafer scale integration since the number

of processors is quite large even for small values of n.
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8.4 The Luk Triangular Array

Franklin Luk has independently proposed a triangular array to compute the

SVD using the Jacobi algorithm [Luk86]. A top level diagram of the array

appears in Figure 8.4.1. This particular architecture is unique in that it first

computes the QR decomposition of the data matrix as it enters at the top of the

array. The array then computes the SVD of R. (See [Luk86] for a description of

the reduction of A to R.)

The architecture consists of n-1 diagonal processors which compute

rotations and a triangular array of approximately n 2/4 off-diagonal processors

which apply rotations. Located on the diagonals between processors are

memory elements which store the R matrix. These memory elements are
accessible by either processor connected to them. These diagonal "connections"

provide for the movement of data dictated by the odd-even rotation pattern used

in the array. The vertical and horizontal connections are used to transmit rotation

parameters.

The array operates in the following manner to compute the SVD of R. First

the odd numbered diagonal processors compute rotations to annihilate the off-

diagonal elements associated with them. These rotation parameters are then

transmitted up the columns and across the rows to the odd numbered off-

diagonal processors. The off-diagonal processors apply the rotations to the 2-by-

2 submatrices stored in the four memory elements around them. The diagonal

and off-diagonal processors also permute the elements of the 2-by-2 submatrices

associated with them in accordance with the odd-even rotation pattern. After the

"odd" rotations have been computed and applied, the even numbered diagonal

processors compute rotation parameters and transmit them to the even

numbered off-diagonal processors. The process is then repeated with the odd

vq *pi~ ' -~ -..-.. v.'..v.,. ~ 4~*~~ ~ ~ %, '.
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processors and so on. As with the BLV array, in actual operation these steps are

overlapped. For the Luk triangular array each processor is active during every

fourth time step. On termination the singular values will be stored in the memory

elements along the main diagonal. If the singular vectors of A are required the

triangular array must be extended to an m-by-n rectangular array so that the

rotations can be accumulated (see [Luk86] for details).

The Luk triangular array has essentially the same characteristics as the

Brent/Luk/Van Loan array in terms of VLSI implementation.

8.5 The Finn Triangular Array

The final SVD architecture to be discussed was developed by Alan Finn

[Fin82a, Fin82b, Fin83]. The design implements an "approximate" version of the

Hestenes algorithm on a triangular array of processors. Figure 8.5.1 presents

the top level diagram. The array has n2/2 identical processors and requires only

horizontal and vertical connections. It operates in the following manner. Each

sweep of the algorithm requires two full passes of the data matrix through the

array. In each pass, the data elements enter from the left hand side of the array

with one column entering each processor. They flow horizontally across to the

diagonal processor which reflects them downward. The elements then flow off

the bottom of the array and are returned to the left hand edge by the end around

connections. On the first pass of the data through the array, the inner product of

columns i and j is computed in processor (ij). A' he start of the second pass,

processor (ij) computes a rotation which will orthogonalize columns i and j and

then applies the rotation to the elements of columns i and j as the data passes

through the second time. This procedure only approximates the Hestenes

algorithm because all rotations involving column k will not be complete before the

9 '
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- (1,2) (2,2)

(1,3) (2,3) (3,3) :

Figure 8.5.1: Finn SVD array [Fin83]
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next series of inner products involving column k begin. Therefore the inner

products are based on data which can be up to one sweep older than would be

used in the true Hestenes algorithm [Fin82a]. Nevertheless, Finn found that his

algorithm converged, although it required more sweeps than the true Hestenes

method.

Of the five architectures described above, Finn's is probably the best for

VLSI implementation. All of the processors in his design are identical. The

design has an extremely simple interconnection pattern including very natural

data paths into and out of the array. The design scales directly with increases in

the number of columns in the data matrix (the number of rows has no impact on

the design). The only potential problems with the design, for VLSI

implementation, are the long end around connections.

'.

C'.

-.

: : ;* : : ; .> ', ' .> ? ' . , ? . ? "# '



.u , i ,,,,. ,r , ...t .b%,, .'z~l~~ai : J ; . ' .' #'.," " e ,- V' ...1 ' 7.," 7.7,.".747.7.7r"7,77'".

9.0 RESOURCE REQUIREMENTS OF THE SVD ARCH!TECTURES WITH

FLOATING POINT (OR FIXED POINT) AUs

In this chapter the SVD architectures described in Chapter 8 will be

analyzed to determine the number of floating point arithmetic units and the

amount of time they require to compute an SVD. This analysis is based on the

method used by Moreno in the development of his SVD architecture [Mor85].

The method consists of breaking the algorithm computed by each architecture

into successively finer steps until you reach the level of individual multiplications

and additions. At that point you can determine an appropriate number of

arithmetic units to be assigned to each processor in an architecture and the

computation time that will result.

9.1 Ground Rules for the Comparison

9.1.1 Definitions

a. Arithmetic Unit (AU) - A circuit element which performs either a single

floating point multiply or a single floating point add. This comparison does not

.... .. consider the use of pipelined arithmetic units.

b. Operation (OP) - The time required to perform a floating point multiply or

a floating point add. For presently available VLSI AUs, this time is approximately

100 nanoseconds [Lei87].

c. SVD Computation time - The time required by an architecture to

complete the computation of the SVD of a data matrix. The computation time is

the actual "elapsed wall clock time" for the architecture to compute U, Z and V.

However, to make the times independent of VLSI hardware technology, they will

be expressed in units of OPs.

124
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d. Data matrix - In order to simplify the computations of the numbers of A'Js

and computation time, it will be assumed that the data matrix is square with size

n-by-n.

e. Dependency Graphs - To facilitate the analysis of each architecture, a

graphical technique used extensively by Moreno [Mor85] will be employed here.

In this technique a hierarchical set of graphs are constructed to represent the

computations which must be performed. In these graphs the nodes represent the

computations and the arcs represent the precedences between them. For

example, Figure 9.1.1.1 shows the top level dependency graphs for the Hestenes

algorithm as implemented in Moreno's architecture.

9.1.2 Calculation of Divisions and Square Roots

Both the Hestenes and Jacobi algorithms require the computation of

divisions and square roots. It will be assumed that these operations will be

performed using iterative algorithms involving multiplications and additions. For

his analysis, Moreno selected algorithms based on the Goldschmidt method for

division [And67] and a similar method for square-root given in [Ram72]. Moreno

estimates that with a sufficiently accurate initial guess (obtained by table look-up)

a division can be completed in the equivalent of 9 OPs and a square-root in 12

OPs [Mor85]. Figure 9.1.2.1 shows the dependency graphs for the division and

square root algorithms. The graphs show that two AUs can be used in parallel to

reduce the computation time to 6 OPs for a division and 9 OPs for a square root

(allowing 1/2 OP for a table look-up or a 2's complement).

Recently one manufacture (Bipolar Integrated Technology) has announced

[EDN87] a floating point chip which can perform divisions and square roots in

single (extended) clock cycles. The instructions are performed without the need

"p •* ,
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Figure 9.1.1.1: Top level dependency graphs for the Hestenes algorithm
(as implemented in Moreno's architecture [Mor85])
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for externally provided seed values or look-up tables. The company estimates -I

the time for a division to be 3-4 times that of a floating point multiplication. The

time for a square root is at least 5-7 times the multiplication time. They give no

data on the maximum time for a square root. We will not use the chip as a basis

for our analysis since the technical data for it is preliminary and incomplete.

However its announcement is very interesting since the chip could greatly

simplify the implementation of SVD array cells which compute rotation

parameters.

9.1.3 Computation Time vs Arithmetic Units

All of the architectures described in Chapter 8 allow trade-offs between the

numbers of arithmetic units and computation time. To perform a meaningful

comparison of the architectures it is necessary to limit these trade-offs in some

manner. We have chosen to allocate arithmetic units to the architectures in a

way that gives the fastest possible computation time while maintaining

"reasonable" efficiency for each of the arithmetic units. In most cases the

optimum number of AUs is readily apparent. However, in some cases it is

possible to reduce the computation time marginally at the expense of a large

increase in the number of arithmetic units. Normally in these cases, which are

identified in the text, we have chosen to accept the slight increase in time.

9.1.4 Floating Point versus Fixed Point AUs

As shown in Chapter 7, if we normalize the input matrix correctly we can

replace floating point AUs with fixed point multipliers and adders in the portions of

the architectures which compute inner-products or apply rotations. With current

technology there is little difference between the area consumption and speed of

Z N ~d1VZC'Z (Y
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floating point and fixed point multipliers with similar word sizes. However, tables

7.2.1 and 7.2.2 show that we can use smaller fixed point words. Therefore, using

fixed point AUs could reduce the area consumption of the large rotation

application units which are present in every one of the architectures. The fixed

point AUs could also provide a marginal speed improvement.

Our intent is to compare the number of AUs in each architecture and the

number of operations required to complete an SVD computation. For this

purpose it really make no difference if we use fixed point or floating point AUs

since they perform identical functions. The fixed point AUs might give slightly

lower computation times and area requirements but the reductions would be

similar for all of the architectures. Therefore to simplify the analysis we will

discuss only floating point AUs.

9.2 Number of Sweeps for Convergence

For all of the architectures discussed in Chapter 8, the SVD is computed by

a series of iterations or "sweeps" through the algorithm embedded in the design.

Therefore, the computation time (T) is given by:

T = # of sweeps x time per sweep (9.2.1)

The number of sweeps (s) is dictated by the performance of the algorithm. The

time per sweep is dictated by the architecture and the performance of the

processors within it.

Theoretically all of the SVD algorithms require an infinite number of sweeps

to compute the exact U, I and V matrices. In practice it is not necessary to

compute the "exact" values but only values accurate to within a specified working

precision. Experimentally, it has been shown that both the Hestenes and Jacobi

algorithms will converge to a sufficiently accurate solution in a number of sweeps

I. w .--------------------------------------------------------------------------- 4
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that is O(log n) [Bre85a, Bre85b]. In fact rather than perform any convergence

tests to terminate the algorithms, researchers have recommended just running an

algorithm for a constant number (say 10) of sweeps for any size matrix up to n =

1000 [Bre85a, Bre85b]. These observations do not apply to the "approximate"

Hestenes algorithm developed by Finn. He found that the number of sweeps for

his algorithm was more than O(log n) [Fin83]. Therefore, to compare the

computation time of the architectures, it is necessary to determine expressions

for the number of sweeps for each algorithm as a function of the array size (n).

The expressions were determined by performing linear regressions on sets

of experimental data available in the literature. For the Hestenes algorithm the

data from Table 1 of [Bre84] was used. This data set and the best fit curve of the

form s = a Ioglo(n) + b for it ar shown in Figure 9.2.1. The values for a and b

determined by linear regression are 2.7 and 2.0 respectively. For the Jacobi

algorithm, the data set given in Table I (column FHSVD) of [Bre85a] was used.

The data and the linear regression results for the model s = aloglo(n) + b are

given in Figure 9.2.2. In this case the values of a and b are 3.1 and 1.5

respectively. For Finn's approximate Hestenes algorithm the data was taken

from Table 4.4.2 (Method C) of [Fin83]. Several different functional models were

tried. The one that appeared to fit the best was s = bna [or equivalently log (s) =

a log (n) + log(b)]. The data and the regression results for this model are shown

in Figure 9.2.3. The best values for a and b were found to be 0.64 and 1.95

0.64respectively. That is, the number of sweeps for Finn's algorithm is O(n0). This

is a much more rapid rate of growth than log(n).

Now that we have established relationships for the number of sweeps, we

will analyze each architecture to determine the time needed per sweep and the

number of AUs required to achieve that time.
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Figure 9.2.1: Sweeps required by the Hestenes Algorithm
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Figure 9.2.2: Sweeps required by the Jacobi Algorithm
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Figure 9.2.3: Sweeps required by Finn's approximate
Hestenes algorithm (Method C)
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9.3 Moreno Pipelined Architecture

9.3.1 Number of Parallel Processors (P) and Stages (S)

Analysis of the number of AUs and computation time for the Moreno

architecture is complicated by the fact that it is not just one architecture but is a

whole family of architectures. As described in section 8.1, Moreno's design can

use several of the processors shown in Figure 8.1.1 in parallel. Additionally the

number of stages within each of the processors can be varied to produce a range

of throughput rates. The different members of the family are defined by two

variables, P and S; where P is the number of parallel processors and S is the

number of stages in each processor. There are two constraints on P and S.

First, each stage of each processor will be operating on 2 columns of A

simultaneously. Therefore, to keep all stages busy 100% of the time, the number

of stages (PS) must be less than n/2. (Actually, Moreno shows that in order to

resolve dependencies in the column exchange unit PS <_ n/2 - 1 [Mor85].)

Second, there is an upper bound on S. As shown in Figure 8.1.2, in Moreno's

design there are 2 stages in the rotation unit and a maximum of Flog 2 (m)I + 1 -

stages in the inner product tree. (In his thesis, Moreno only counts the rotation

and inner product unit as 1 stage each. This appears to be an error since each

unit is pipelined and can be operating on more than 1 column pair at a time.) The

rotation angle and norm update unit can have at most 59 stages since there are

59 nontrivial operations to be performed. Therefore the maximum number of

stages in a processor is given by S < 62 + Flog 2 (m)-.

We have chosen to concentrate on the group of designs with P = 1. The

single processor design was analyzed since this selection will always yield the

most efficient design. As P increases relative to n, the number of stages in each
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processor must decrease to maintain the relationship PS < n/2 -1. As S

decreases it becomes more difficult to match the throughput rate of each stage

exactly. Therefore some stages will have underutilized processors. The choice

of P=1 provides the best opportunity to match the throughput rates of all stages.

Our choice of S is dictated by the goal of having the fastest possible

computation time while maintaining reasonable efficiency for the individual AUs.

The fastest computation time is achieved when the throughput rate of each stage

is one column pair per time step. (i.e. we are able to complete the

orthogonalization of two columns every time step.) This rate can only be

achieved when S is a maximum (= 62 + log 2 (m)1) and when there are a

sufficient number of columns to keep tre pipe completely full (n _ 2S + 2). For a

square matrix these conditions are satisfied when n > 126+2 Fog2 (n)1. This

equation is satisfied in the equality sense for n = 142. Therefore for all values of

n _ 142, S will be set to 62+ Flog 2 (n)1. Below n = 142, S will be set to - n/2 -1.

9.3.2 Number of AUs and OPs for n > 142

For n >_ 142, the throughput rate of each stage can be set to 1 column pair

per time step. In order to support this rate the rotation angle / norm update unit

must have 1 AU per operation or a total of 59 AUs. The inner product tree must

have n multipliers at the leaves and n adders in the tree or a total of 2n AUs. The

rotation application unit must have two multipliers and an adder for each of the 4n

values it produces per orthogonalization or a total of 12n AUs. Overall, the total

number of AUs required by Moreno's architecture (CMor) is

C r  14n + 59 = 0(n) AUs, for n 142 (9.3.2.1)Mor
Since the throughput rate is one orthogonalization per time step the

computation time is equal to the total number of orthogonalizations required to
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compute the SVD. The design performs exactly n(n-l)/2 orthogonalizations

during every sweep. As shown above, the Hestenes algorithm requires

2.71og 2 (n) + 2.0 sweeps to converge. Therefore the computation time for the

Moreno architecture is given by:

TMor = [2.7 Iog 1o(n) + 2.0] (n/2) (n - 1) - O(n 2log n) OPs, for n > 142

(9.3.2.2)

9.3.3 Number of AUs and OPs for n < 142

Below n = 142 we must have S = n/2 -1 and we must allocate AUs to

equalize the throughput of each stage. As shown in [Mor85], the number of

stages, the throughput rate and the number of AUs for each of the major units in

Moreno's design using non-pipelined AUs are as follows:

Unit S Toh t #of AUs Remarks

Rotation Computation so Se/59 so Includes norm update

Rotation Application 2 G/4n 3G G = # of M/M/A units

Inner Product Iog 2 (F)+l F/n 2F F - # of leaves in tree

(Note that the throughput rates shown are only approximately those computed by

Moreno. His equations include ceiling functions which make further use of the

formulas very difficult. For the purposes of this study the approximate values

provide adequate estimates of computation times and numbers of arithmetic units

once n is larger than, say, 10.)

To satisfy the requirements on the number of stages and to have equal

throughput rates for all stages we must have

Se + Iog 2(F) + 3 = n/2 - 1 (9.3.3.1)

p.-
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and

S /59= G/4n =F/n (9.3.3.2)

From equation (9.3.3.2) we see that F = S n/59. Substituting this expression for

F into equation (9.3.3.1) gives ,"

So + log2( Sen/59 ) + 3 = n/2 -1 (9.3.3.3)

or rearranging terms

S e + log 2( S) - Iog 2(59) + 4 = n/2 - Iog2 (n) (9.3.3.4) -

Noting that Iog2(59 ) = 6 we see that we can determine a value for S0 from

So + log2( S) - 2 = n/2 - Iog 2 (n) (9.3.3.5)
Once Se is found, equation 9.3.3.2 can be used to compute values for F and G

and from them the number of AUs can be computed. Doing so we find the the

total number of AUs (CMor) is given by

CMor S8+ 2F+3G = S + 2 S n/59 + 3(4 S n/59)

= SO(1 + 14n/59), for n < 142 (9.3.3.6)

Since S e is O(n) we see that the number of AUs in the Moreno architecture is

0(n2 ) for n < 142 if we wish to maintain high efficiency.

The computation time for n < 142 is again the time for an orthogonalization

times the number of orthogonalizations required to complete the SVD. In this

case the orthogonalization time is the inverse of the throughput for the slowest

stage. Since all stages have been designed to have equal throughput rates the

orthogonalization time equals 59/S Therefore the total computation time is

given by:

TMor = (59/SO) [2.7 logl 0(n) + 2.0] (n/2) (n - 1) OPs for n < 142

(9.3.3.7)

Since S is O(n), the computation time for Moreno's architecture is 0(nlogn) for

n<142. However the proportionality constant is very high.
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9.4 Schimmel/Luk Unear Array

9.4.1 Arithmetic Units

The first unit we will consider in the Scimmel/Luk array is the matrix

multiplier. In order to achieve a fast computation time for H (= UX) and V, the

rotations should be applied to both matrices in parallel. This requires the matrix

multiplication unit to have 2n columns. The original Schimmel/Luk design has

three rows of processors in the matrix multiplication unit. However, on close

analysis of the structure of the tridiagonal matrix it can be seen that every other

element of the sub and super diagonals is zero. If this structure is exploited the

number of rows in the matrix multiplication unit can be reduced to two [Sch86b].

The top row requires only one AU per processor to compute a multiplication. The

bottom row will require two AUs per processor, one for a multiplication and one

for an addition. Hence the matrix multiplier unit needs 6n AU's.

The inner product unit as shown in Figure 8.2.2.2 would require 3n AUs, 2n

for the top row and n for the bottom. The purpose of the top row is to compute

the norm of each column. An alternate method is to compute the norms once at

the beginning of the algorithm and then update them during each sweep to reflect

the effects of the rotations. If columns i and j are being orthogonalized then the

updated norms of columns i and j (p. and p., respectively) are given by

P cos2 sin20 pi -2Y jcose sine

wpe sin ) 2e S2e + 2,1, cosO sin (9.4.1.1)

where pi and pj are the original column norms, y, is the inner product of columns i

and j and 0 is the rotation angle. If this norm update procedure is performed in
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the rotation'solver unit, then the top row of cells in the inner product unit can be

eliminated. This reduces the number of AUs in the inner product unit to n.

The final section of the Schimmel/Luk design which must be considered is

the rotation solver unit. The performance of this unit is critical. To support the

matrix multiplication unit it must produce a new set of rotation parameters (cos e

and sin 0 ) every other time step. This suggests that the unit be pipelined with a

throughput rate of one rotation computation per 2 time steps. Figure 9.4.1.1

shows the dependency graph of the rotation computation. The figure also shows

the dependency graph for the norm update computation since this calculation has

been moved to the rotation solver. A count of the number of non-trivial

operations (multiplications by 2 and additions of 1 are ignored) gives a total of 59

OPS (allowing 9 OPs for divisions and 12 for square-roots). Therefore if

approximately 30 AUs were used in the rotation solver pipeline, the desired

throughput rate of one rotation every two OPs could be attained.

However, there is a problem with this assignment of AUs; the delay through

the rotation solver. With a pipeline of 30 AUs each performing two OPS the total

delay is 60 OPs. This is much too long. The start of each matrix product would

have to be delayed by that amount from the time when the first inner product was

available from the previous matrix product. This is disastrous for small matrices.

For example, suppose that a square matrix with n = 60 is being processed. In a

typical iteration, the matrix multiplier will complete its operations on the matrix

after 62 OPs. The inner product unit will produce the first inner product one OP

later. But then we must wait 60 OPs for the rotation solver to produce the first set

of rotation parameters. During those 60 OPS the 6n (= 240) AUs in the matrix

multiplier are sitting idle. The AUs in the matrix multiplier (and those in the inner

product unit as well) will only be busy approximately half of the time. This

problem is even worse for matrices with n smaller than 60. It does become less

5)m
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severe for square matrices with n greater than 60 or for matrices which have

many more rows than columns.

The delay through the rotation solver can be reduced somewhat by

recognizing that the norm update computation can be accomplished in parallel

with the matrix multiplication. That is, as soon as the rotation parameters are

available they can be transmitted to the matrix multiplier and simultaneously to a

norm update processor. Analysis of Figure 9.4.1.1 reveals that the rotation

parameters are available after 47 OPs. However, this is still a long delay.

This problem was discussed with Schimmel and Luk. They suggested that

the delay could be reduced by speeding up the division and square root

computations. They noted that the number of iterations required for these

operations can be reduced by improving the initial "guesses". This can be done

by increasing the number of entries in the table which contains the initial values.

With a sufficiently large look-up table an adequate division or square root result

can be obtained in one iteration. This would translate to 4 OPs for a division and

5 for a square root and would reduce the overall rotation calculation to 23 OPs. If

a pipeline of 23 AUs are used in the rotation solver connected in a manner which

exploits the limited parallelism in the rotation calculation, the delay through the

unit is reduced to approximately 20 OPs. This pipeline of 23 AUs was the

configuration finally accepted.

The rotation unit also requires AUs for the norm update. Note that after the

first set of rotation parameters is delivered, the rotation unit can compute the

following sets at a rate of one every other time step. Therefore the norm update

unit can operate at half the rate of the rotation solver. Since there are 12 OPs in

the norm update, only 6 AUs are required. This brings the total AUs in the

rotation unit to 29.

L',,,I'Z ." ., , '.' 't' y ; t.. .S.*'V V-'- , '. 5'M.- ,, ,, ..
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In summary the Schimmel/Luk array requires 6n AUs for the matrix

multiplier, n for the inner product unit and 29 for the rotation solver.

The total (Csck/Luk) is given by

Csck/Luk - 7n + 29 = O(n) AUs (9.4.1.2)

9.4.2 Computation Time

The Schimmel/Luk array uses the odd-even ordering scheme shown in

section 2.2 to generate rotation pairs. Therefore the design requires the data

matrix to flow through the array n times for each sweep in order to perform all

n(n-1)/2 possible column pair orthogonalizations. A total of n+3 OPs are required

for the first row of the matrix to be processed by the matrix multiplier and inner

product unit. An additional 20 OPs are required for the delay through the rotation

solver. At that point the first row can be processed again. Therefore each data

pass requires n + 23 OPs of time. Accordingly each sweep requires n(n + 23)

OPs. Finally, since the Hestenes algorithm requires 2.7 Iogl 0 (n) + 2.0 sweeps,

the total computation time (TSctLuk) is given by

TschVLuk - [2.7 Iog1o(n) + 2.0] n (n + 23) - O(n 2log n) OPs (9.4.2.1)

lI
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9.5 Brent/Luk/Van Loan (BLV) Square Array !
9.5.1 Rotation Parameter Computation

In the two previous architectures, we have seen that the computationally

complex calculation of the rotation parameters is performed by a highly pipelined,

special purpose unit. This was possible since the architectures were designed to

keep such units busy. However, in the case of the BLV array and the other two

quadratic arrays which follow, it is not possible to pipeline the rotation

computations. In these arrays some (or possibly all) of the processors must

compute and apply rotation parameters and then transmit them to neighboring

cells. These processors must then wait for their neighboring cells to apply the

rotations. Only then can they exchange data with their neighbors and start on the

next set of rotation parameters. Therefore, pipelining can not be used.

Accordingly, we can use only a few AUs in the rotation parameter computation

effectively. Since the number of AUs is limited, the computation time for the a'

rotation parameters will be long.

9.5.2 Arithmetic Units

In the BLV array the diagonal processors compute rotations and apply them. b

Therefore the diagonal processors should be designed to take advantage of even .

the small amount of parallelism available in the rotation computation. A

dependency graph for the rotation parameter computation in the Jacobi algorithm -

is shown in Figure 9.5.2.1. Recalling that the iterative algorithms for divisions

and square-roots can use two AUs in parallel, the figure shows that 4 AUs can be ,M

used effectively in the computation. In their paper [Bre85a], Brent, Luk and Van

Loan recommended the use of an alternate computation procedure for the

I.
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rotation parameters. They call it algorithm USVD and a dependency graph for it

appears in Figure 9.5.2.2. They prefer algorithm USVD because it only has 3

divisions and 3 square roots as opposed to the 4 divisions and 4 square roots in

algorithm FHSVD which appears in Figure 9.5.2.1. However the dependency

graph for algorithm USVD shows much less parallelism than that of algorithm

FHSVD. Therefore in the subsequent analysis it will be assumed that algorithm

FHSVD is used and 4 AUs will be allocated to each diagonal element.

The off-diagonal processors have many fewer operations to perform. In fact,

they spend most of their time waiting for the diagonal processors. Therefore only

one AU will be assigned to each off-diagonal processor.

Since there are a total of n 2/4 processors in the BLV array with n/2 of them

on the diagonal the total number of AUs (CBLV) required is given by

CBLV -" n2 /4 + 3n/2 = O(n 2) AUs (9.5.2.1).

9.5.3 Computation Time

Brent, Luk and Van Loan state in their paper that the processors (and the

communication links) in their array are busy only one third of the time [Bre85a].

This is a somewhat pessimistic conclusion. We believe that the two time periods

between the normal active periods could be used for the computation of the U

and V matrices. This could be done by having each processor retain a copy of

the rotation parameters for three time periods. During the first period of a three

period cycle, a processor would: accept (or compute) new rotation parameters;

apply them to the A matrix; transmit the parameters to its neighbors; and

exchange elements of the U matrix (completed during the previous three cycle

period) with its neighbors. In period two, the processor would aoply the rotations

to the U matrix and exchange elements of the V matrix (completed during the

"I.
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previous three cycle period) with its neighbors. During period three, the

processor would apply the rotations to the V matrix and exchange elements of

the A matrix with its neighbors. In this way the U and V matrices could be

computed in the BLV array with no increase in time over that of I alone. In the

SVD time calculation for the BLV array it has been assumed that this savings will

be exploited.

The computation time for I in the BLV is found as a product of the number

of sweeps, the number of iterations per sweep required to annihilate all off-

diagonal elements, and the time for each iteration. The number of sweeps (as

shown in Section 9.2) is equal to 3.1 loglon + 1.5. Since each of the n/2 diagonal

processor annihilates 2 off-diagonal elements during each iteration, a total of n of

the off-diagonal elements are annihilated per time step. Therefore at least n-1

iterations are required to annihilate all n(n-1) off-diagonal elements. The BLV

array achieves this minimum since it uses a round robin communication pattern.

The structure of the BLV array allows more than one iteration to be processed

simultaneously. In fact a new iteration is started each time the diagonal

processors compute rotations. Therefore the time for an iteration is the time

required for the diagonal processors to complete the three period cycle described

in the previous paragraph. In order to compute the time for the three period

cycle, an assumption must be made on the timing strategy used to synchronize

the processors in the array. The two possibilities are a systolic architecture or a

data flow design.

If the array is assumed to be systolic then there must be a global clock

which provides a periodic timing signal to control data transfers between

processors. The clock period would have to be longer than the time for the

longest computation, which is the time for the computation of rotations (tr). The

)1U
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time for the three period cycle for each iteration would be at least 3 tr for the I

systolic design. Using 4 AUs in a diagonal element, tr is 41 OPs and the iteration

time is 123 OPs. 9.

Alternatively, the array could be based on a data flow design. In this

scenario each individual processor is self-timed and performs its functions as

soon as all necessary operands are available. Data transfers are controlled by

"handsha~ing data registers". If the BLV array used a data flow structure, the

overall computation time would be dictated by the time for the slowest

processors, the diagonal elements. In a typical three period cycle a diagonal

element (with 4 AUs) requires 41 OPs to compute and apply rotations. Then it

must wait for the next two time periods while the off-diagonal processors apply

rotations. The computation performed by the off-diagonal processors (shown in

Figure 8.3.1) requires 24 OPs with 1 AU. Therefore the diagonal processor must

wait for 48 OPs before its next set of operands are available. (Actually, as

described above, the diagonal processor can be applying the rotations to its

portion of the U and V matrices during the wait time.) As a result the time for an r

iteration for the data flow design equals 41 + 48 = 89 OPs. Note that it is

possible to lower this time somewhat by using more than one processor in the K.

off-diagonal elements. For example if two AUs were used, the application of

rotations would take only 12 OPs and the iteration time would be 65 OPs.

However adding one AU to each off-diagonal processor would double the area

consumed by the array. This doubling of the area gives only a 27% decrease in

the computation time. So unless speed is of paramount importance, the use of

more than 1 AU per off-diagonal processor does not appear to be cost effective.

In summary, the data flow design provides a faster iteration time than the

systolic design (89 versus 123 OPs). The data flow design will be used for all
'..
K)

K,.,
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further computations and comparisons. With an iteration time of 89 OPs the

SVD time the for the BLV array (TBLV) is given by

TBLV =89 [3.1 Ioglo(n) + 1.5] (n-i) = O(nlogn) OPs (9.5.3.1)

If a constant number of sweeps (say 10) are used then the computation time for

the BLV array is O(n). However, the proportionality constant is almost 900. For

the linear arrays described above, the computation time is O(n 2 ) if a constant

number of sweeps are used. But the proportionality constants are in the range of

5 to 10. This large disparity ir the proportionality constants will become

important in the comparison of the architectures given in a later chapter.

9.6 Luk Triangular Array

9.6.1 General Comments

The analysis of the Luk triangular array is very similar to that of the BLV

array in the previous section. Again we have processors on the main diagonal

which compute and apply rotations and off-diagonal processors which apply

rotations. There are some minor differences in that the Luk array uses a different

interconnection pattern and rotation ordering scheme. The major difference is

that the Luk array operates on a upper triangular matrix (R) instead of a full data

matrix. It must compute this matrix prior to the SVD computation, so the time

required for the QR decomposition must be included in the overall computation

time. Like the BLV array, each processor in the Luk array is only active for a

fraction of the total computation time. In the Luk array each processor is active

for one period out of a four period cycle.

The Luk array is ideally suited for the computation of T only. It can be

,% % 2~ 2 L!? 2.
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extended to compute U and V by adding additional processors. The number of

AUs is computed below for both cases. As in the BLV case, the computation of

U and V can be done in a manner which does not increase the computation time.

That is, the processors can apply rotations to the U and V matrices during their

normally inactive periods.

9.6.2 Arithmetic Units

The Luk triangular array has Fn2 /41-1 (= n 2/4) off-diagonal processors if we

are computing _ alone or n 2/2 if we want X, U and V. Following the rationale

given for the BLV array, we would assign one AU to each off-diagonal cell.

However, we will see that that we can handle all of the operations of 2 off-

diagonal cells with a single AU with no increase in SVD computation time. We

can do this because each off-diagonal cell is busy for only 2 time steps out of

each 4 step cycle, if we are computing I, U and V. Therefore the number of AUs

in the off-diagonal processors is = n2/8 if we are computing I alone or n2/4 if we

are computing 1, U and V.

The Luk array has n-1 diagonal processors. They perform the identical

function as the diagonal processors in the BLV array, computing rotations to

diagonalize a 2-by-2 submatrix. There is one minor difference, however. Luk

uses "outer rotations" as opposed to the "inner rotations" used in the BLV array.

He does this because the outer rotations not only diagonalize the submatrix but

perform a permutation of the elements as well [Luk86]. This permutation is

exactly the one required by the odd-even ordering scheme used in the Luk array.

Therefore the exchange of data elements is accomplished as a side-effect of the

application of rotations rather than as a separate step. Luk recommends a two

step procedure similar to algorithm USVD shown in Figure 9.5.2.2 for the
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computation of the rotations'[Luk86]. Again for improved computation time, it

appears that an algorithm such as FHSVD shown in Figure 9.5.2.1 modified to

compute outer rotations would be preferable. This algorithm can use 4 AUs per

diagonal processor. As in the case of the off-diagonal cells we can handle the

functions of two of the diagonal cells with one set of AUs. Accordingly we need a

total of 2(n-1) AUs for the diagonal cells,

In summary, the total number of AUs for the Luk array (CLuk) is given by

S /8 + 2(n-1) to compute I alone

Luk - (9.6.2.1)

9.6.3 Computation Time

The analysis of the computation time for the Luk array is similar to that of

the BLV array. Again it will be assumed that a data flow architecture is used. We

must however account for the time required for the QR decomposition (ORD) at

the start of the algorithm.

The computations performed in the QRD are similar to those in the SVD.

For the QRD, the diagonal processors compute a single set of rotation

• "parameters to annihilate sub-diagonal elements and transmit them across the

rows of the array. The off-diagonal cells apply the rotations. The process

continues until all n(n-1)/2 elements of the lower triangular portion of A are
annihilated. From this description we see that the QRD is very similar to one

sweep of the SVD computation on the Luk array (except only single rotations are

involved rather than the pair of rotations used in the SVD). Therefore for

simplicity it will be assumed that the QRD takes half of the time of one of the SVD

sweeps.

..
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Luk only gives data on the number of sweeps required for convergence of

his algorithm for very small matrices (n < 20). Therefore it will be assumed that it

requires the same number of sweeps as that of the BLV array. That is the

number of sweeps, including the extra time for the QRD, is 3.1 log 10 (n) + 2.0.

During each sweep n(n-1)/2 elements must be annihilated in the diagonal

processors. As shown in section 2.2 this requires a total of n iterations for the

odd-even rotation ordering scheme. In the Luk array each iteration requires one

step to compute rotation parameters in the diagonal processors followed by a

step to apply rotation parameters in the off-diagonal processors. The fo!lowing

diagram illustrates the activity pattern of the diagonal processors during a single

sweep for n=8. The notation (i, j) denotes the annihilation of element r... A dash
indicates an inactive time period for the processor.

Diagonal
Processor 1 2 3 4 5 6 7
Step 1 (1,2) - (3,4) - (5,6) - (7,8)

Step2 - - -

Step 3 (1,4) (3,6) (5,8)"
Step4 - - -

Step 5 (2,4) - (1,6) - (3,8) (5,7)

Step 6

Step 7 - (2,6) (1,8) (3,7)
Step8 -

Step 9 (4,6) - (2,8) (1,7) (3,5)

Step 10 -

Step 11 (4,8) (2,7) (1,5) -

Step12 -1

Step 13 (6,8) - (4,7) (2,5) (1,3)

Step 14 - -

Step 15 (6,7) (4,5) (2,3) -

Step16 -16"

NIX-a

df.'~~fq(~~fip~ a i Cff..f~ ~i \~I ,f~aP ~ ~ ~a waV'". ". Xa,,p I~ *
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This diagram clearly illustrates how we can share AUs between cells. For

example we see that the functions of diagonal cells 1, and 2 can be handled by a

single set of AUs since cells 1 and 2 are never active at the same time. A similar

diagram of the off-diagonal cells would show the exact same pattern. We also

see that the diagonal cells can compute U and V during their normally inactive

"even" time steps.

The diagram also shows that the time for a sweep is n times the sum of the

time for an odd numbered step and the time for an even numbered step. During

odd numbered steps the rotation parameters are computed using algorithm

FHSVD modified to compute outer rotations. As shown in [Luk86], to compute

outer rotations we need only replace the formula

sig n (p)

Ipl +p2 (9.6.3.1)

by
°' '

t = -sign(p) [ Ip+ 1 +2] (9.6.3.2)

From this we see that the modified version of FHSVD will have one less division

than the original. As a result the computation time for the rotation parameters

using 4 AUs in the diagonal processors will be 35 OPs (41 OPs - 6 OPs for a

division). The time required for the even numbered steps is just the time for 1 AU

to apply a set of rotations = 24 OPs. Therefore a sweep requires 59n OPs and

the overall SVD computation time for the Luk triangular array is given by

TLuk = 59 [3.1 Ioglo(n) + 2.0] n = O(nlogn) OPs (9.6.3.3)

As in the case of the BLV array, if we use a fixed number of sweeps (10) then the

computation time is O(n), but the proportionality constant is high (= 600).
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9.7 Finn Triangular Array

9.7.1 General Data Flow

As shown in section 8.5, the Finn array implements an approximate version

of the Hestenes SVD algorithm. To give a better feeling for the data flow in the

Finn array, Figure 9.7.1.1 depicts the array structure and the initial data entry for

a 3-by-3 matrix. Figures 9.7.1.2 and 9.7.1.3 show the start up phase and a single

sweep of the SVD computation. During each time period a processor is either

computing an inner product (IP), computing rotation parameters and updating

norms (e/NU), applying rotations (Rot.) or is idle (Wait). The start up phase is

required to compute the column norms of the original data matrix and the inner

products of the columns. The norms are computed in the first column of

processors as the matrix elements enter the array for the first time. After that the

norms are updated. Once this start up phase is completed the array performs a

number of sweeps (shown in Figure 9.7.1.3) each of which consists of two

passes of the data. A data pass is defined to start when element a11 enters the

(1,1) processor. During the first pass inner products are computed. During the

second pass rotations are computed and applied.

It should be noted that the only function of the "diagonal" processors in the

Finn array is to store and transmit data values. Therefore they do not require

AUs but can be constructed with data registers. The only exception to this is the

(1,1) processor which is required to compute the norm of column 1 during the

start up phase. After that it is idle. By shifting this norm computation into the

(1,2) processor, the (1,1) processor could also be replaced by data registers.

'p

"p
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(1,1) (3 )

a a a
31 21 11

a a a a
32 22 12

z.

a a a a-
33 23 13

Figure 9.7.1.1: Array structure and initial data entry for the
Finn architecture (for a 3-by-3 matrix) .,
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9.7.2 Arithmetic Units

Without the diagonal processors, the Finn array requires n(n-1)/2

processors. The processors are all functionally identical. As usual the number of

AUs for each processor is dictated by the rotation/norm update calculation. The

dependency graph for this computation is shown in Figure 9.7.2.1. Note that this

is the graph for the best approximate method developed by Finn, which he calls

Method C. This method provided the fastest convergence [Fin83]. With one AU,

64 OPs are required to complete the computation. This time can be reduced to

45 OPs by using 2 AUs. Adding a third AU only reduces the time to 41 OPs.

Accordingly each processor will be allocated two AUs to give a total (CFinn) of

CFinn = n(n-1) = O(n ) AUs (9.7.2.1)

9.7.3 Computation Time

As shown in section 9.2 the number of sweeps for Method C is equal to

1.95n ° .64 for an n-by-n array. Each sweep in turn requires 2n steps. To compute

the time for the 2n steps we will again assume that a data flow structure is used.

A careful analysis of Figure 9.7.1.3 shows that during n of the steps at least one

element of the array is computing rotations, updating norms and applying the

rotations to two of the data elements. With two AUs, each of these steps

requires 48 OPs (45 for the 6/NU computation and 3 to apply the rotation).

During the remaining n steps all processors are applying rotations or computing

inner products. With two AUs, 3 OPs are required to apply a rotation while only 2

OPs are required for the inner product computation. Therefore the total time for

the 2n steps in a sweep is 51 n OPs and the total computation time is given by

TFinn = 51n (1.95 n° 64) = 100 n '64 = O(n 1 64) OPs (9.Y.3.1)

This rate of growth is much higher than that of the other quadratic arrays.
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10.0 COMPARISON OF SVD ARCHITECTURES WITH FLOATING POINT AUs

The purpose of this chapter is to compare the resource requirements of

each of the SVD architectures described in the previous two chapters. Table

10.1 summarizes the data presented in Chapters 8 and 9 for each of the

architectures. The last row of the table contains entries for a category called AUs

x OPs. This is just the product of the number of AUs and the computation time

for each architecture. This category is provided as an attempt to quantify the

total resource requirements of each architecture and to permit comparison

between the linear and quadratic designs. It is similar to the Area-Time metric

used in VLSI complexity theory. The table shows that all of the architectures

except Finn's have an AU x OP product that is O(n 3 logn). Finn's is larger,

O(n 3 .64), due to the higher rate of growth in the number of sweeps for his

approximate algorithm. Asymptotically all of the other four designs have similar

resource requirements. However we will see that some significant differences

emerge when time and area are considered separately and when the specific

proportionality constants associated with each architecture are included in the

comparison.

The comparison of the architectures will be presented as a series of charts

which show the number of AUs and OPs as a function of n, the size of the data

matrix. Normally two charts are presented for each comparison. The first shows

the characteristics of the architectures for large values of n (up to n = 1000). This

gives the asymptotic behavior of the designs. The second chart gives the data

for small values of n (up to n = 100). These charts are included because

hardware technology available now and in the immediate future will not support

the construction of SVD arrays for large values of n. As of this date a single AU

(in particular a parallel floating point multiplier) consumes the majority of an

160
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integrated circuit. Therefore initial attempts to construct SVD processors will by

necessity be limited to values of n _ 100. The charts for n !5 100 are provided to

show the trade-offs between SVD architectures which could be constructed now

or in the immediate future using VLSI and possibly wafer scale integration.

In order to provide reasonable graphs of the data, most of the charts are

semi-logarithmic. It is important to remember this since the display format tends

to mask significant differences between architectures. For example a factor of

two difference in the computation time appears as a small, constant, vertical

displacement between two curves in the graphs.

10.1 Total Number of Computations Required

Each of the architectures implements slightly different versions of one of the

two SVD algorithms. This immediately gives rise to some differences in the total

number of computations required to compute the SVD. Figures 10.1.1 and

10.1.2 are provided to show these differences. The charts show the number of

operations that would be performed by a single AU to complete an SVD using

each of the specific algorithms (we will denote this quantity by T (l )) the

computation time for a 1 AU system.

The first chart (10.1.1) shows the number of operations required by the

basic Hestenes and Jacobi algorithms. It also shows the number of operations

required by the Golub-Reinsch algorithm. These curves were developed by a

careful count of the number of floating point adds and multiplies (recall that an

add and a multiply are both considered to be one OP) for each algorithm. For the

Golub-Reinsch algorithm it was assumed that three OR iterations would be

required to reach convergence for each singular value. For the Hestenes and

Jacobi algorithms it was assumed that the number of sweeps for convergence is
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0(logn) with the exact constants given by the formulas developed in Section 9.2.

With these assumptions the following formulas were developed to relate the total

number of OPs required to compute U, I and V to the size (n) of the matrix.

GolUb-Reinsch

() 70 3 256
TGR - 3 n39n+y -8

ldel

Hest en ' s

TS He [2.1 lg0 1 (n) +2.0If(n - 1)(1 4n +59) (10.1.2)

T [3.1 loOn .,n( )2n+14 (10-1.3)Jcb

From these equations we see that asymptotically the total operations

required by the Golub-Reinsch algorithm will be lower since it is 0(n 3 ) while the

other two are O(n3 logn). In fact Figure 10.1.1 shows the Golub-Reinsch

algorithm to be superior for all values of n. The chart and the equations also

show the Hestenes algorithm to be faster than the Jacobi algorithm. The t

difference is approximately a factor of two for large values of n (= 19n3logn for

Hestenes versus 37n3 logn for Jacobi). This is because the Jacobi algorithm
requires the computation and application of two Givens rotations for each step

while Hestenes uses one.

Figure 10.1.2 shows the same type of curves for each of the five SVID

architectures. The Moreno design implements the Hestenes algorithm exactly

and the BLV array implements the Jacobi algorithm exactly. So

Tj_1 T [31Ogo n d T 1.]-n-1)2n+14 (10.1.4) '

TMo THes an BLV TJcb

II,
ft . Vw~z ~f. %W( U%%~P~f*'. r'.~? ~ft 5ft t'"t ,
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The Schimmel/Luk architecture requires slightly more operations than

Moreno's since it uses the odd-even rotat 'n ordering scheme. The total number

of operations for the Schimmel/Luk algoritim is

TSh/Luk = [2.71og1o(n) +2.0] .n (14n +29) (10.1.5)

The Luk array uses the Jacobi algorithm on an upper triangular matrix. This

yields a small savings in the number of operations in computing the rotations and

applying them. The exact formula for the Luk design is

LTk = [3.1 + (n- 1)(18n +84) (10.1.6)TLu k  I~l~ )  2-

Finally the total number of operations required by Finn's approximate

Hestenes algorithm (Method C) is

T(1) nO.64fn
TFin = (1.95n 6)-(n - 1)(14n +64) (10.1.7)

These relationships are summarized in Figure 10.1.2. The chart shows that

the four architectures which implement exact algorithms are similar in the total

operations required. Both of the Hestenes based designs are faster than the

Jacobi architectures. Finn's algorithm is clearly more expensive. The chart also

shows that the best algorithm is more than three times as expensive as the

Golub-Reinsch algorithm.

' t4
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10.2 SVD Computation Times

Figures 10.2.1 and 10.2.2 show plots of the computation time for each

architecture. That is these charts show the "wall clock time" (expressed in OPs)

needed by the multi-processor units to compute U, I and V.

The first chart (10.2.1) gives the results for n up to 1000. As expected, for

large values of n the "quadratic" BLV and Luk arrays are much faster with the Luk

array providing the best speed. However that the Moreno "linear" design

provides better performance than the BLV array for matrices up to n = 200! The

Moreno computation time is less than two times that of Luk's for this size matrix.

This observation is surprising since we will see that the Luk array has more than

3.5 times as many AUs as the Moreno design for n = 200. The chart also shows

that the Moreno design is faster than the Schimmel/Luk design for large values of

n. We will see that this is because the Moreno design has more AUs. Finally the

chart shows that the Finn architecture is clearly slower than the other quadratic

arrays and only "beats" the linear arrays for very large values of n. (The Finn

curve will eventually intersect the Moreno curve.)

Figure 10.2.2 shows a detailed plot for n < 100. This plot is interesting

because it shows significant divergences from the long term trends of Figure

10.2.1. For example we see that the fastest architecture for all matrices up ton =

40 is the Schimmel/Luk, linear design. Beyond that point the Luk quadratic array

becomes superior. We also see that the Moreno architecture is slower than the

Schimmel/Luk design for small matrices (up to n = 55). This is because the

number of AUs in the Moreno design falls off rapidly as n decreases to avoid

gaps in the data flow through the pipeline.

" I
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10.3 Number of Arithmetic Units

Figures 10.3.1 and 10.3.2 show plots of the number of AUs used by each

design. Figure 10.3.1 shows exactly what is expected for large values of n; the

linear arrays require many fewer processors than the quadratic arrays. It also

shows that the Moreno design has approximately twice as many AUs as the

Schimmel/Luk architecture. If we concentrate on the quadratic arrays, we see

that the Luk and BLV array require the same number of AUs and the Finn array

requires four times as many. This is because the Finn array has twice the

number of processors each with twice as many AUs. The other interesting thing

to note about this chart is the shear scale of the numbers. For n = 1000, the

smallest quadratic structure (BLV or Luk) requires approximately 1/4 million AUs!

The smallest linear structure (Schimmel/Luk) requires = 8000 AUs. These large

values make it unlikely that an SVD array for n = 1000 will be fabricated in the

near future.

Figure 10.3.2 shows the number of AUs required for matrices with more

reasonable numbers of elements. In this case there are almost no divergences

from the long term trends. The only exception is the Schimmel/Luk architecture.

We see that the number of AUs for this design does not drop off as rapidly as for

the others. There are two reasons for this. First, the pipelined rotation solver in

the Schimmel/Luk design is a "fixed cost" since it has a constant number of AUs

(29) for all size matrices. Second the number of AUs in the Schimmel/Luk design

is a linear function of n (=7n+29). The quadratic arrays have O(n 2/4) AUs.

Therefore once n is below 32 the quadratic functions fall off faster than the linear

function. Finally, the chart shows that the number of AUs in the Moreno array

drops off very quickly as n approaches 10.
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10.4 Total Resource Requirements

To this point we have seen that asymptotically the quadratic arrays are

faster than the linear arrays but require many more processors. We have also

seen that for small matrices (n_540) the Schimmel/Luk architecture is the fastest

but its hardware requirements are relatively high. In order to give a definitive

comparison what is needed is a consolidated figure of merit for each architecture

which combines computation time and hardware requirements. Figures 10.4.1

and 10.4.2 attempt to do this by giving plots of the total number of operations that

are actually consumed by each architecture during the SVD computation. For

example, if an architecture has 10 AUs and takes 1000 OPs to complete the SVD

then the architecture consumes 10,000 OPs.

Figure 10.4.1 shows the total resource requirements for large n. It shows

that the two linear arrays are very similar and are both superior to the quadratic

arrays. To help clarify the differences the following table gives an approximate

expression for the the total resource requirements of each architecture for large

n and also gives exact values for n = 1000.

Architecture OPs x AUs Exact Total (n =100 M

Moreno 9n 3 logn 7.1 x 1010

Schimmel/Luk 19n 3 fogn 7.3 x 10 10

Luk 46n3 logn 1.7 x 10 11

Brent/LukNan Loan 69n3 logn 2.4 x 1011

3.64 12Finn 99n 8.3 x 10

Golub-Reinsch 23n 3  2.3 x 1010

The table shows that the best quadratic architecture (Luk) is more than 2.5 times

as expensive as the linear arrays. The BLV design requires almost three times

the amount of resources as the linear arrays. Finn's architecture is clearly inferior

* Uj%% % .; A~ A %~~.~~-
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since it requires more than an order of magnitude more resources than the next

most expensive design. Finally, we see that even the best architecture is three

times as expensive as the Golub-Reinsch algorithm.

Figure 10.4.2 shows the total resource requirements for small matrices.

Essentially the same conclusions hold for small matrices as for large. The

quadratic arrays all continua to be more expensive than the linear arrays.

10.5 Efficiency of the Architectures

To get some insight into the reasons for the conclusions of section 10.4, it is

instructive to compute the efficiency of each architecture as a function of n. This

can be done very easily by dividing the total computations required by the

algorithm implemented by each architecture (given in section 10.1) by the total

resources actually consumed (given in section 10.4). That is the efficiency of

design x (Ex) is given by

ET xC (10.5.1)
x X

Using the formulas given in section 10.1 and 10.4, it is easy to develop

asymptotic efficiency values for each architecture for large n. The following table

gives these figures.

Architecture Efficiency

Moreno 100%

Schimmel/Luk 100%

Luk 61%

Brent/Luk/Van Loan 54%

Finn 14%

Figure 10.5.1 gives efficiency curves as a function of n for all five

architectures. It can be seen that the curves for all designs approach their

'-- J '. %
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asymptotic values very quickly. The chart also provides very good support for

the conclusions drawn in section 10.4. There we said that the linear arrays were

less expensive in terms of total resources required. Here we see the reason is

that the linear arrays use their OPs very efficiently. In fact when the proper

number of AUs are assigned to each stage in the Moreno pipeline essentially full

utilization of every OP can be achieved. We also saw in section 10.4 that the

performance advantage of the Schimmel/Luk design over the quadratic arrays

falls off as n approaches 10. Figure 10.5.1 shows that the reason for this is the

sharp decline in the design's efficiency as the data matrix grows smaller. This is

just a manifestation of the delay through the pipelined rotation solver. The matrix

multiplier and inner product units with their many AUs must sit idle for 20 time

steps out of every cycle. For small matrice- this delay becomes a significant

fraction of the total cycle time. Finally we saw in section 10.4 that the Luk array

required fewer OPs than the BLV design and many fewer than Finn's. The chart

shows the Luk array is slightly more efficient than the BLV array and four times

as efficient a.; Finn's. Note that if we had used a purely systolic design for the

Luk and BLV arrays we would expect efficiencies of 50% and 33% respectively.

By using a data flow design we have improved the efficiency of both arrays.

10.6 Speedup Provided by the Architectures

In general the driving force behind the development of parallel architectures

is the needed for computation rates which cannot be attained with a serial

processor. In the previous sections we have presented much information on the

speed of the different SVD architectures but none of it tells us how weli we are

doing in relation to the best performance of a single processor system. One way

to get at such information is to compute the "speedup" provided by each

S .J..*....%.S.
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architecture. Speedup is defined to be the ratio of the computation time for a

single processor system to the time for a multiprocessor system. In our case the

best performance for a single processor system is achieved with the Golub-

Reinsch algorithm. Therefore the speedup provided by architecture x (Sx) is

given by

Sx =GR T/T x  (10.6.1)

This function has been computed and plotted for each architecture in Figure

10.6.1. The chart shows that the parallel architectures due offer dramatic

speedups for the computation of the SVD. For example, if we use about 3000

AUs in either of the linear designs we can speed up the SVD computation time by

approximately a factor of 1000.

Ideally the speedup will be a linear function of the number of AUs [Sx =

O(C)].The chart appears to show linear relationships for the speedup of the SVD

architectures. In reality the curves all have an O(C/Iogn) relationship except

Finn's which is 0(0/n0 .64 ). Since C is a rapidly growing function of n, the charts

do not show the impact of the logn or n0.64 term.

The other desirable feature for a speedup curve is to have a slope close to

one. A slope of one indicates that all of the available OPs provided by an

architecture are being used productively. Figure 10.6.1 reveals that none of the

architectures have a slope close to one. The approximate slope values are given

in the following table.

Architecture Speedup Slope

Moreno 0.37

Schimmel/Luk 0.33

Luk 0.18
Brent'Luk/Van Loan 0.13

Finn 0.02
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This table shows that none of the the SVD architectures is outstanding at

applying its OPs towards the task of computing the SVD. In particular the

quadratic arrays are very poor. There are two reasons for this. First, as shown

in Section 10.1, the Hestenes and Jacobi algorithms require more than twice as

many OPs as the Golub-Reinsch algorithm. Therefore in the speedup

computation, the SVD architectures start off at a disadvantage. On top of that,

the quadratic arrays are all less than 62% efficient.

10.7 Comparison for the Computation of I Alone

The comparisons given above are for the computation of U, I and V. In

many applications only the singular values are required. We can easily perform a

similar analysis for the computation of I alone. Table 10.7.1 summarizes the

characteristics of all of the architectures for the computation of I alone.

Comparing this table to Table 10.1 we see that in three cases (Moreno,

Schimmel/Luk and Luk) the number of AUs required declines significantly. This

is because we can eliminate processors whose sole purpose is to compute V or

U. The BLV and Finn arrays require the same number of AUs. The computation

times for four of the designs do not change at all. (Finn's decreases by a very

small constant factor.) This is because the computation of U and V is done in

parallel with I in the linear arrays and is performed with available, unused OPs in

the quadratic arrays. Therefore elimination of U and V does not effect the

computation time for Y.

Figure 10.7.1 shows a plot of the number of AUs for each architecture. The

only significant change from Figure 10.3.2 is that the Luk curves falls below the

BLV curve for large n. This is because we have eliminated the extra n2 /4 off-

diagonal processors required to compute U and V in the Luk array. This leaves
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n2 /8 AUs in the off-diagonal ceiis of the Luk array, while the BLV array has n2/4.

Figures 10.7.2 and 10.7.3 give the total resource requirements of the

architectures for the computation of I. We see that all of the conclusions drawn

from Figures 10.4.1 and 10.4.2 hold. Note in these two charts that the Golub-

Reinsch algorithm requires an order of magnitude fewer total operations than the

best architecture. We will see that this is because the Golub-Reinsch algorithm

is very efficient at computing X.

Figure 10.7.4 gives the efficiency curves for the architectures in computing

.. Note that thi linear arrays maintain the efficiencies displayed in Figure 10.5.1,

but the efficiency of the quadratic arrays decreases. This is because we are no

longer using their excess capacity which was used to compute U and V.

Finally, Figure 10.7.5 gives the speedup provided by the architectures for

the computation of I. Here we see that the already bad situation shown in

Figure 10.6.1 has gotten much worse. Now the speedup curve for the best

architecture (Moreno's) has a slope of only 0.07. The reason for this is that the

Golub-Reinsch algorithm is exceptionally efficient for the computation of Y. If we

assume three QR iterations for each singular value, then asymptotically the

Golub-Reinsch algorithm requires only 8n3/3 OPs to compute 1. This is only 9%

of the total OPs required to compute U, I and V. The Hestenes and Jacobi

algorithms do not share this property. The Hestenes algorithm uses 57% of its

OPs for I and Jacobi uses 50% (asymptotically). Therefore in the speedup

computation, the parallel architectures are being compared to an exceptionally

efficient single processor algorithm. The result is a very poor showing for the

parallel architectures.
• ::
* 4'

U

+• C U Cm.C ' C ~ 4 
C ? ~ , .- * ~r-

% ~ . ~' ~ -'~.V - ~ *~~~* ~ *~ ** % ~ ~ 4 . 44%4 4~ 444 *4~4 4,



185

CC

00

0a 0

U))
D C 0

o -E a )
E a)

I. C C m 0

0 O0
0 0 a 4 U)

x 0

CD0 C

wU -
N AO.

ol E
o 0
LO E 0

a:a

o t
U) C

00C1

Cl) cli C

oo co
0 CD C a 0 ) CD

(SdO)SNOI-VH~6



186

ca0

oC

oE I

00

L0-
0 -CuD

0 0OCa

00

x0

CL >

C-Co

o c

C-
0 CDo~~ oQ 0 0

- -- -

(sdo) SOUNUIn

~ ~ V~~% '~ ~ - %. - '~% %'%' %"%.%0



187

00

o Ei

0 Co

C m
CZ 0) .i -

0 0 U 0l .

CD U)

U--c

(0 < >)

C)C
U, 0

00

CVC
0)

GD
C) a l 0 0 0 C 0

(D c N UO RT c) Co

(IU9J,9d AN301JA



188

00

00

oc

00

CD

CC.

E CD
-0

0 0.
ooo < " C

cis CL

0 n o

o E

0 E

0 CuD

-0 0

C;

* n a 0 U l 0 4O U'

dflQ33dS



189

10.8 Area Requirements of the Architectures

So far we have looked at the computation time and arithmetic unit

requirements of each architecture. When architectures like these are

implemented in VLSI a critical concern is the requirement for chip area. The

number of AUs is certainly a primary driver for the total area, but there are

additional factors which must be considered. Such concerns include the wiring

area required by the interconnection pattern, the amount of storage that must be

provided, and the complexity of the control structure. We will take a qualitative

look at these concerns to determine which architectures are likely to require extra

area.

With a few exceptions, all of the architectures have local interconnection

wiring patterns. The Moreno design requires broadcasting of the rotation

parameters and has global wiring patterns from memory to the pipeline.

Otherwise the majority of the Moreno architecture has simple tree-like wiring

patterns. The Schimmel/Luk architecture also requires global routing to memory.

The Finn architecture has global end around connections. The remaining

interconnections in these two architectures are predominantly vertical and

horizontal nearest neighbor connections. The BLV and Luk architectures have

only local interconnections but they both require diagonal connections. These

will significantly increase the wiring area in VLSI or will require the use of

additional wiring layers. So the BLV and Luk arrays will require relatively more

area for interconnect than the other three designs.

In terms of area required for storage of data values, the linear arrays have

several advantages. Both the Moreno and Schimmel/Luk arrays have global

memories to store the data matrices. Since the memories are consolidated, they

can be designed using many of the area conservation techniques used in the

,JLz~-.%K~~.~~\w
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design of random-access memory chips. The linear arrays require only one or

two registers per processor since each AU performs only one operation then

immediately transmits the data to the next AU. The quadratic arrays will require

many registers per cell. In contrast to the linear arrays, they store all of the

elements of the U, I and V matrices in individual registers in the processor cells.

They also perform many operations before transmitting data to the next cells.

This necessitates the storage of intermediate results. Finally the iterative
I

algorithms for division and square root require the storage of a table of initial

values. For the quadratic arrays this table is duplicated in every diagonal

processor, or in the case of Finn's architecture, in every cell. The linear arrays
I

require only one such table. With these advantages, the area devoted to
memory elements in the linear designs should be relatively much lower than that

of the quadratic arrays.
I

The same statement can be made about the control structures required by

the architectures. In effect the control structure for the linear arrays is built right -

into the arrangement of the AUs and their interconnection pattern. Each

processor repeatedly performs only one operation and then sends its result to the

next. The only element of the designs which appears to need a dedicated control

structure is the global memory. These statements are always true for the

Schimmel/Luk array. They are also true for the Moreno array for values of n

above 142 since in this range each stage processes the data for an entire column

all at once. Below that value, the Moreno architecture would require some

control mechanism at the front end of each major pipeline stage. Such a

controller is needed to divide each column into fixed length segments and control

the flow of the segments. In contrast the quadratic arrays would require control

structures in each cell. Since each cell performs a number of operations using a

Wr -a
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limited number of AUs, a controller is needed to assign tasks to AUs and to direct

the flow of operands. It is likely that each of the cells in the quadratic arrays r

would require a simple CPU to control the AUs.

In summary, the quadratic arrays require significantly more chip area than

the linear arrays. They require many more AUs and much more area per AU.

10.9 Summary and Conclusions

This chapter has compared the different architectures for computing the

SVD. Based on this comparison we can draw the following conclusions.

a. The total resource requirements (OPs x AUs) of the linear arrays are

lower than the quadratic arrays for all size matrices.

b. The computation time for the linear arrays is lower than that of the

quadratic arrays for all square matrices up to n = 40. The fastest time for the

linear arrays is less than two times that of the fastest quadratic array (Luk's) for

all matrices up to n = 200. The theoretical speed advantage of the quadratic

arrays is really apparent only for arrays larger than n= 200.

c. The speed advantage of the quadratic arrays for large matrices is

obtained by a dramatic increase in the number of AUs. For example at n = 200

the fastest linear array (Moreno's) requires approximately 2860 AUs. For the

same size matrix the fastest quadratic array (Luk's) requires approximately

10400, more than 3.5 times more!

d. Each AU in the quadratic arrays will require more chip area than a

similar AU in the linear arrays due to the overhead area that must be devoted to

memory, control and interconnect.

e. All of the architectures are driven in some way by the rotation angle ,,

computation. Both linear arrays have complex, pipelined, rotation units made up
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of many AUs. These units are required to maintain a throughput rate high

enough to support the rotation application units. The quadratic arrays cannot

utilize pipelined rotation solvers. They pay the price of the rotation computation

by having a few processors perform many operations. This causes the

computation time for the quadratic arrays to be much longer than would

otherwise be the case.

f. The linear arrays make very efficient use of the available OPs. The

quadratic arrays waste more than half even using a data flow structure.

g. The speedup provided by the parallel SVD architectures over the serial

Golub-Reinsch algorithm is potentially very large but is far from optimum. For the

computation of U, I and V the best architecture (Moreno's) provides an

asymptotic speed up that is only 37% of the theoretical maximum. For the

computation of I alone the speedup provided by the parallel architectures is very

low. The best architecture provides only 7% of the theoretical maximum

speedup. The Golub-Reinsch algorithm is just far superior to the Hestenes and

Jacobi algorithms for the computation of Y.

h. Overall, the Schimmel/Luk architecture appears to be the best for

implementation with current VLSI technology. It has a very simple, regular

structure which scales directly with the number of rows in the data matrix. Almost

all of its cells are identical multiply-accumulate processors. It has a very simple

interconnection pattern. While we have focused exclusively on square matrices,

it is important to note that the Schimmel/Luk design requires no modification

other than increased memory to handle rectangular arrays. Finally, with current

VLSI technology it is difficult to imagine building SVD arrays for n much larger

than 40. The Schimmel/Luk array provides the fastest computation time for

matrices of this size.

.4



11.0 COMPARISON OF SVD ARCHITECTURES WITH CORDIC AUs

11.1 CORDIC Processors in SVD Architectures

As stated in the conclusions of the previous chapter, all of the SVD

architectures have difficulty with the computation of the rotation parameters

required by the Hestenes and Jacobi algorithms. This situation arises because it

is difficult to compute divisions and square-roots with floating point multipliers and

adders. One potential solution to this problem is the use of CORDIC processors

to compute and apply rotations. Using CORDIC processors can greatly simplify

the structure and data flow in the SVD architectures. As an example Figure

11.1.1 shows the dependency graph for the rotation computation ard norm

update function in the Hestesnes algorithm using CORDIC units. Comparing this

figure to Figure 9.4.1.1, which shows the same computation with floating point

AUs, we see a dramatic reduction in the complexity of the calculation. This

clearly illustrates the potential benefits of CORDIC processors for the SVD

architectures. In this chapter we will analyze the five SVD architectures to

determine if they can employ CORDIC units in place of floating point AUs. If so

we will compare the CORDIC versions to the floating point versions to show the

impact of the CORDIC processors.

11.2 Operation Time and Area Requirements for a CORDIC Arithmetic Unit

In order to perform comparisons between CORDIC and floating point

architectures, we must have some idea of the relationship between the time for a

CORDIC operation and a floating point OP. We must also determine if there is a

significant difference in the area requirements of a CORDIC and floating point

AU. This is difficult because there have only been a few CORDIC processors
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built and even fewer implemented in VLSI. We will draw some general

conclusions based on the limited data that is available.

First, it appears that the VLSI area requirements of a CORDIC unit and a

floating point AU are roughly the same. With current CMOS technology either

type of unit consumes the majority of a chip. The one well documented VLSI

CORDIC processor was developed by Haviland and Tuszynski in 1980 [Hav8O].

They constructed a CORDIC processor which computed 24 bit fixed point results.

The chip was constructed using an 8-1Lm, metal-gate, bulk CMOS process. In

order to fit the entire algorithm onto a single chip, the 24-bit data were processed

in two 12-bit steps. All of the hardware was sized for 12-bit computations. With

currently available 2 lim CMOS technology a "full' 24-bit version, or perhaps even

a 32 bit version, of the same architecture could be fabricated on a single chip.

In order to make some estimate of the computation time for a CORDIC

operation we must make an assumption on the type of arithmetic used. In order

to compute an n-bit result in a CORDIC processor a series of n shifts and adds

must be performed. Some CORDIC processors have been built which use

floating point arithmetic for these operations. However this does not make sense

for the SVD calculation. For instance, If floating point arithmetic is used in a

CORDIC processor then it would take thirty two floating point OPs to apply a

rotation to a pair of 32-bit matrix elements. However if the rotation is applied with

floating point AUs it takes only 12 OPs. The real advantage of the CORDIC

algorithm comes through the use of fixed point arithmetic like that used in the

Haviland and Tuszynski chip. In this case the shifts and adds can be performed

very rapidly using fixed point hardware. We will assume that fixed point

arithmetic is used in the CORDIC algorithm.

With this assumption we can determine the time required for a CORDIC OP
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in two ways. First we can extrapolate the data given by Haviland and Tuszynski

for their chip to today's CMOS technology. We can also break a CORDIC OP

into its individual steps and estimate a time for the steps.

Haviland and Tuszynski estimated that their chip could perform a CORDIC

operation in 40 pis [Hav8O]. This was based on an estimated gate (inverter) delay

of 100 ns for the 8 I.m, metal-gate, CMOS process. With current 2 pim CMOS

technology, typical gate delays are on the order of 5 ns. Fabrication of the same 1- "
I

architecture with 24m CMOS should produce a chip which could compute

CORDIC OPs in 2 p.s. Another factor of 2 increase in speed can be achieved by

using full 24 bit operands rather than dividing the computations into 12-bit half-

words. Therefore the Haviland and Tuszynski data suggest a CORDIC OP time

of approximately 1 pas or 1000 ns.

We can also develop a time estimate based on the fact that a single

CORDIC OP requires n fixed point additions of n-bit numbers to be computed in

a serial manner. For n = 24, current technology allows the computation of an n-

bit fixed point addition in approximately 30-40 ns. Based on this, the total time for

a 24-bit CORDIC OP would be 720-960 ns.

Both of our estimates indicate a CORDIC OP time of approximately 1000

ns. This is 10 times the time for a floating point multiply (100 ns) with current

technology. We will use this 10 to 1 ratio as the basis for comparison of CORDIC

and floating point SVD architectures.

11.3 CORDIC Versions of the SVD Architectures

In this section we will analyze each of the five architectures to determine if

they can employ CORDIC units in place of floating point AUs. If so we will

analyze the number of CORDIC units required by an architecture and the

", , ,,, .t .V ' .,'',t ' ' ,W , ' w w,' .. ;." ,; : ., 'r" "= ' , : -,..; ,. ': ,". . . ...,:.,?,?,,% , .",.... .,, v , .. . ' .v .,,..,- :A JV' % , .' '_ ; " "
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computation time provided by the CORDIC design. Note that we will use the

term AU to refer to an arithmetic unit which performs either CORDIC or floating

point operations. The term OP will still be limited to mean the time for a floating

point OP. When we want to indicate the time for a CORDIC operation we will use

the term CORDIC OP.

11.3.1 Moreno Pipelined Architecture

The Moreno architecture can utilize CORDIC processcrs very effectively in

the rotation computation and rotation application units shown in Figure 8.1.2.

CORDIC versions of these units are shown in Figure 11.3.1.1. Note that in this

case the actual rotation angle (0) is broadcast to the rotation application unit

instead of the cosine and sine of the angle. Since the inner product unit performs

only multiplications and additions CORDIC processors would not be appropriate.

Instead the original structure with floating point AUs will be retained.

Analysis of the computation time and the number of AUs required by the

CORDIC design is much easier than was the case for the floating point design.

In the floating point version, the Moreno pipeline could have as many as 62 +

Iog 2 (n) stages. This lead to two distinct computations of the number of AUs, one

for n > 142 and one for n < 142. For the CORDIC design there are far fewer

stages since there are a maximum of three in the e/NU unit and one in the

rotation unit.

Also for the floating point design with n _> 142, we saw that the fastest

computation time was achieved by assigning enough AUs to each stage to give a

throughput rate of one orthogonalization per time step. The same is true for the

CORDIC design. Once the data matrix is sufficiently large, we can achieve a rate

of one orthogonaliztion per time step by assigning five CORDIC AUs and 1



198

a. iInner Productsa.

Compute 4-
Rotations

and
Update Norms

(see Figure 11.1.1) Pi

a Apply Rotations

a a a a a e a -a 2

,j 
o

17 o" 18 27 28 37 38 78 n7 - n8
a a a a a a e a -a

15 .- 16 25 26 35 36 56 n5 _n6
a- a a a a a e a a-

;r'3 14 23 24 33 34 34 n3 r4
A a a a a a e a a-.

1 1 12 21 2 2 3 1 32 12 n 1 n 2 "-

CORDIC CORDIC CORDIC CORDIC
Plane Plane Plane Plane

Rotation Rotation Rotation Rotation

Figure 11.3.1.1: CORDIC version of the Moreno architecture

-

P.~ ~ ' ~ ~ -~ ,*',



199

standard AU to the O/NU unit and 2n CORDIC AUs to the rotation application unit

(n AUs each for the H matrix and the V matrix). We also need standard AUs to

apply the CORDIC constant and compute inner products. Note that since the

CORDIC AUs are 10 times slower than floating point AUs, we can reduce the

number of floating point AUs in the inner product ui.,t. We can also apply the

CORDIC constant to the output of more than one CORDIC AU in the rotation

application unit with a single multiplier. To match the throughput rate of the other

stages the number of AUs in the inner product unit can be reduced by a factor of

10 from 2n to n/5. Similarly we need only n/5 multipliers to apply the CORDIC

constant. Overall the CORDIC version of Moreno's architecture requires 2.4n + 6

AUs. This is approximately 6 times less than the number of AUs in the floating

point version of Moreno's architecture for n > 142 (14n + 59).

This formula for the number of AUs applies when we have enough columns

in the data matrix to keep all stages filled. Since there are 4 stages in the

rotation units and 1og 2 (n/5) in the inner product unit, this condition will be satisfied

when n _> 2 x [4+log 2 (n/5)]. This equation is true for all n _ 10. So the formula for

the number of AUs in the CORDIC design applies over the full range of interest.

As stated above, with this allocation of AUs the throughput rate of the

pipeline is one orthogonalization per time step. Each time step is the length of

time for a CORDIC operation or equivalently 10 OPs. Therefore the total time for

the SVD computation for the CORDIC version of the Moreno architecture

(TMor(co)) is given by
n

TMo) =10 [2.7 Iogl0(n) + 2.0] J (n-1) Os (11.3.1.1)

This is 10 times the computation time of the floating point design with n >142.
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11.3.2 Schimmel/Luk Architecture

It is not possible to use CORDIC processors efficiently in the Schimmel/Luk

architecture. Their design is very carefully tailored to allow the rotations to be

applied by a matrix-matrix multiplication. Such an operation requires only

multiplications and adds. CORDIC arithmetic units are very inefficient for these

operations.

11.3.3 Brent/Luk/Van Loan Array

The BLV architecture is ideally suited to CORDIC units since its cells only

compute and apply rotations. Figure 11.3.3.1 shows the dependency graphs for

the computations in the diagonal and off-diagonal processors using CORDIC

operations. If we compare this figure to Figure 9.5.2.1 we can see that the

rotation computation is greatly simplified. Also note that we now transmit the

actual rotation angles (01 and 02) from the diagonal processors rather than the

corresponding cosines and sines.

Figure 11.3.3.1 shows that we can use two CORDIC AUs in the diagonal

processors and either one or two in the off-diagonal processors. We also need

one floating point AU in each cell to apply the CORDIC constant and to perform

the additions required in the diagonal cells. In total we need n2 /2 + n/2 AUs if we

use one CORDIC unit per off-diagonal element or 3n 2/4 if we use two.

The computation time for the CORDIC version of the BLV array wiil be

computed under the same assumptions used for the floating point design.

Namely, we will assume that U and V are computed with the unused portions of

each processors cycle. We will also assume a data flow design. With these

assumptions the computation time is given by the number of sweeps times (n-1)

iterations per sweep times the number of OPs per iteration. As in the floating
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4f
,

point case, each iteration consists of a three step cycle. During the first step the

diagonal processors compute rotations and apply them to their 2-by-2

submatrices. During the other two steps the off-diagonal processors apply

rotations. With two CORDIC AUs and one floating point AU allocated to a

diagonal processor, the computation time for step one is 40 OPs. With one

CORDIC AU and one floating point AU allocated to an off-diagonal processor, the p.

computation time for steps two and three is 44 OPs each. This gives a total cycle

time of 128 OPs which is somewhat longer than the 89 OPs of the floating point

design. If we use two CORDIC AUs in each off-diagonal cell, the time for steps

two and three is reduced to 26 OPs each. This gives a total cycle time of 92

OPs. This is a reduction of approximately 28% in the computation time at the

expense of doubling the number of AUs. This does not seem to be a reasonable

trade-off especially considering that the BLV array is already very expensive in

terms of chip area. Therefore we will allocate only one CORDIC AU to each off-

diagonal cell. Accordingly the SVD time for the CORDIC version of the BLV

array (TBLV(co)) is given by

T (o) = 128 [3.1 Iogl(n) + 1.5] (n -1) OPs (11.3.3.1)

11.3.4 Luk Array

Exactly the same CORDIC modifications used in the BLV array can be

applied to the Luk array. That is, we can use two CORDIC processors and one

floating point AU in the diagonal elements and one CORDIC and one floating

point unit in the off-diagonal processors. Also, we can still use the strategy used

in the floating point version of pairing cells and using a set of AUs per pair. The

CORDIC units in the diagonal processors would have to be modified to compute
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outer rotations. This is a simple modification involving sign and variable changes

in the CORDIC equations. It does not change the CORDIC algorithm or the area

requirement of a CORDIC unit. With this allocation, the total number of AUs in

the CORDIC version of Luk's design is n2 /2 + 3(n - 1)/2, double the number of

the floating point version.

The computation time is equal to the number of sweeps (including an extra

1/2 sweep for the QRD which can also be performed with CORDIC hardware)

times n iterations per sweep times the number of OPs per iteration. Each

iteration in the Luk array consists of a two step cycle, one step for the diagonal

processors to compute and apply rotations and the other for the off-diagonal cells

to apply them. With two CORDIC AUs and one floating point AU allocated to a

diagonal processor, step one requires 38 OPs (two fewer than the BLV case

since the sub-diagonal element of the 2-by-2 matrix is already zero in the Luk

array). With one CORDIC AU and one multiplier per off-diagonal cell, step two

requires 44 OPs. The total time for the two step cycle is 82 OPs. The overall

computation time for the CORDIC version of Luk's array (TLuk(co)) is given by

T ,k(c)= 82 [3.1 logl 0(n) + 2.0] n OPs
(11.3.4.1)

This is slower than the floating point version.

11.3.5 Finn Array

The Finn architecture can not use CORDIC units efficiently. This is because .,

we have concentrated on Finn's method C algorithm which uses cosine

parameters which can not be easily computed by CORDIC units. We could use

CORDIC processors in some of the other approximate Hestenes algorithms

discussed by Finn [Fin83]. However these other algorithms have even slower

convergence rates than Method C. Since the Finn architecture with Method C

.L U ~* ~-
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has already been shown to be non-competitive with the other architectures, it D

would be pointless to analyze an even slower algorithm. ,

11.4 Comparison of CORDIC a,.i Floating Point Designs

In this section we will compare the resource requirements of the three

architectures which have both CORDIC and floating point versions (Moreno, Luk

and BLV). The intent of the comparison is to determine if the use of CORDIC

processors changes the conclusions given in section 10.9 for the floating point

designs. The comparisons are given again in the form of charts. In this case we

give just one chart covering the values of n from 10 to 100. These charts are
I

adequate to present both the asymptotic behavior for large matrices and the

detailed characteristics for small matrices.

I
11 .4.1 Number of A~ls

Figure 11.4.1.1 shows the number of AUs required by the CORDIC versions

in comparison to the floating point versions. We see that while the CORDIC

version of Moreno's architecture requires fewer AUs, the BLV and Luk designs

require twice as many. This is a direct result of the need for a multiplier to apply

the CORDIC constant in each of the off-diagonal cells of the BLV and Luk arrays.

As in the floating point case the linear array requires many fewer AUs than the

quadratic arrays.

11.4.2 Computation Time

Figure 11.4.2.1 shows the number of OPs required by the CORDIC versions

in comparison to the floating point versions. We see that the only significant

change is the number of OPs in the Moreno architecture. Asymptotically, the

I

~,
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CORDIC version requires 10 times more OPs. The CORDIC versions of both the

BLV and Luk designs require a small constant more OPs than the floating point

versions. The important observation for this chart is that the computation time for

the quadratic arrays is now distinctly better than that of the linear array for all

values of n > 30. In the floating point case the linear array was competitive for all

values of n up to 200. The reason for this change is that the CORDIC units slow

the Moreno array down by a factor of 10 but have only a small effect on the time

for the quadratic arrays.

11.4.3 Total Resource Requirements

Figure 11.4.3.1 shows the total resource requirements (OPs x AUs) for the

CORDIC designs in relation to the floating point versions. The chart shows that

the CORDIC versions of all of the architectures are more expensive. The

CORDIC versions of the BLV and Luk arrays have twice as many AUs and

require more time per iteration. For the CORDIC version of the Moreno array the

number of AUs decreases by a factor of approximately 6 but the computation

time increases by a factor of 10. We see that the CORDIC version of Moreno's

linear array is considerably less expensive than the CORDIC versions of both

quadratic arrays as was the case for the floating point versions. Finally the chart

shows that the CORDIC designs are still expensive in comparison to the Golub-

Reinsch algorithm.

11.4.4 Efficiency

Figure 11.4.4.1 compares the efficiency of the CORDIC and floating point

architectures. The chart shows that both versions of the Moreno architecture can

be designed to give 100% efficiency. The efficiencies of the CORDIC versions of

°
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both quadratic arrays is worse than the corresponding floating point efficiencies.

This is because of the multipliers in the off-diagonal processors. Most of the time

these AUs are sitting idle. For example in the CORDIC version of the BLV array

the multipliers in the off-diagonal processors are active for only 8 OPS out of

every 128 OP cycle or only 6% of the time. In contrast the CORDIC AUs in the

off-diagonal cells are used very effectively (80 OPs per 128 OP cycle - 63%).

Overall the CORDIC, BLV array has an asymptotic efficiency of 34%. For similar

reasons the asymptotic efficiency of the CORDIC version of the Luk array is only

44%. The floating point versions of the BLV and Luk arrays were shown in

section 10.5.1 to be 54% and 62% efficient, respectively.

11.4.5. Speedup

Finally, Figure 11.4.5.1 shows the speedup provided by the CORDIC

designs in comparison to the speedup for the floating point designs. The chart

shows that all of the CORDIC designs provided significantly lower speedup than

the floating point designs. This is expected since the computation times of the

CORDIC designs are all greater than the floating point designs.

11.5 Observations and Conclusions

The greatest benefit of the CORDIC units is the dramatic simplification of

the cells in each of the architectures. This is especially true of the O/NU unit in

the Moreno design and the diagonal cells in the quadratic arrays. We can

replace many floating point AUs, the tables for initial values for divisions and

square-roots and much of the control structure of these units with a few simple

CORDIC processors. Therefore the area requirement of the CORDIC designs

should be lower than the floating point equivalents. Also because we only
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transmit one parameter (0) the interconnect structure of the CORDIC designs is

simplified.

However, the comparison charts given in section 11.4 indicate that there is a

price to pay for the simplification. The total resource requirements of all of the

architectures is significantly higher with the CORDIC AUs. The primary difficulty

in the Moreno design is the increase in computation time caused by the CORDIC

AUs. In the quadratic arrays the problem is the need for the multipliers in the off-

diagonal cells to apply the CORDIC constant. Without these multipliers the

CORDIC versions of the quadratic arrays would be very competitive with the

floating point versions. The number of AUs would be the same for either version

and the CORDIC computation time would be only slightly longer. But because a

CORDIC AU can not apply its own constant we are forced to include the extra

hardware.

The charts show that the use of CORDIC processors makes the

computation time of the quadratic arrays more competitive with the linear arrays

for small matrices. However they do not change the relationship between the

linear and quadratic arrays in terms of total resource requirements. The

quadratic arrays still require more resources Finally the CORDIC processors do

not increase the speedup provided by the architectures.

}'S
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12.0 CONCLUSIONS

We have computed the number of bits needed in the arithmetic units of SVD

arrays and we have analyzed and compared the resource requirements of

several proposed SVD architectures.

Our results are based on the assumption that we are operating on matrices

of quantized data. This assumption is realistic for many digital signal processing

applications of the SVD. Matrices of 8-bit and 16-bit quantized data values are

quite common in image processing and seismic and hydroacoustic data

processing. Many other applications are also covered since it is common

practice to generate digital data values with finite precision A-to-D converters.

The assumption that we are operating on quantized data elements is crucial

to our results. Since the data elements have quantization errors, the singular

values and singular vectors generated by the SVD will have "quantization errors"

also. Therefore it is unnecessary and, in fact, unrealistic to compute the SVD to

extremely high precision. In computing the number of bits needed in the AUs of

an SVD array, we have assumed that we must have enough bits to keep the

magnitude of the largest round-off error at or below the magnitude of the

quantization error.

We have shown both theoretically and experimentally that the variance of

the quantization error of the singular values of a quantized data matrix is as large

as the variance of the quantization error of the data. This result is not oniy

important for computing the number of bits needed in the AUs, but it is also

significant by itself. It shows that we must be aware of the the characteristics of

the original data in deciding how to use the results of an SVD computation. We

must be very wary of using singular values which are smaller than, say, two times

the standard deviation of the quantization error.

213
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We used the analysis given by Wilkinson [Wil65] for the symmetric

eigenvalue problem to bound the magnitude of the round-off error for the Jacobi

and Hestenes SVD algorithms. Wilkinson's analysis covers standard fixed point

and floating point arithmetic. Following Wilkinson's arguments, we developed a

similar bound for the round-off error of the algorithms using fixed point, CORDIC

AUs. The bounds for CORDIC arithmetic are very similar to Wilkinson's bound

for fixed point arithmetic but include an additional factor of "t" to account for the

number of iterations needed to complete a CORDIC computation.

Our simulations of the SVD algorithms with finite precision arithmetic

showed the theoretical bounds to be much too loose. Based on a careful

analysis of the accumulation of errors in the simulation runs, we were able to

develop much tighter approximate, statistical bounds. For standard and

CORDIC fixed point arithmetic the new bounds are O(n 3/2 ) lower than the

theoretical bounds (for square matrices). For the floating point case, the

reduction is O('4n).

We used the statistical bounds to compute the number of bits needed in

SVD array AUs to insure that the round-off error is no larger than the quantization

error. Our results show that we need essentially the same number of bits for

either the Hestenes or Jacobi algorithms (when processing square matrices). If

we use properly rounded shift and add operations, CORDIC processors require

approximately 8 fewer bits than floating point AUs. Our computations indicate

that once the input matrix has been normalized to prevent overflows, standard

fixed point AUs can be used very effectively in the rotation application units of

SVD array. In fact, fewer bits are required by the fixed point AUs than either the

CORDIC or floating point AUs for the application of rotations. Finally our

computations show that fairly large words are needed to compute the SVD

'I
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accurately if we are processing large matrices or input data with many bits. For

example, 32 bit floating point AUs are useful only for small arrays of 8-bit data.

For applications involving the decomposition of 100-by-1 00 arrays of 16-bit data

we will need 40-bit floating point AUs. However, we do see that commonly

available 32-bit fixed point AUs could be used in the off diagonal processors of

SVD arrays designed for large 8-bit matrices or moderate size 16-bit arrays.

We have described five different SVD architectures and compared their

resource requirements with floating point and CORDIC arithmetic units. The

comparison shows that the total resource requirements (OPs x AUs) of the linear ',
'

designs are lower than that of the quadratic arrays for all size matrices. With

floating point AUs, the difference between the best quadratic array (Luk's) and

the linear designs is asymptotically a factor of 2.5. In addition, the quadratic

arrays require much more area per AU due to the overhead of communications,

control, and data storage.

We have seen that the computation time of the linear arrays is competitive

with that of the quadratic arrays for matrices up to size 200-by-200. The linear

arrays perform so well because they use the Hestenes algorithm and apply their

operations very efficiently. The BLV and Luk arrays use the Jacobi algorithm,

which requires more operations, and both designs are less than 62% efficient.

The Finn design is not competitive with the others due to the increased number

of sweeps required by its approximate Hestenes algorithm.

We have also seen that the architectures can provide a significant speedup

in the computation of the SVD. This is really what we are after in developing

such complex structures. The best speedup is obtained when we want to

compute U, I and V of a dense matrix. If we need only , the speedup provided

by these architectures is poor in comparison to the Golub-Reinsch algorithm.

]I
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Finally we have seen that CORDIC arithmetic units can greatly simplify the

portions of the architectures which compute rotation parameters since they

eliminate the complex division and square root operations. However the

CORDIC processors effectively double the total resource requirements of all of

the architectures. They also result in longer computation times. With the recent

announcement of a floating point chip which includes divisions and square roots

as single clock-cycle instructions, it appears that CORDIC based SVD arrays will

not be the wave of the future.

It is clear that parallel SVD architectures will be very useful for signal

processing applications. They offer computation times which will allow the SVD

to be used in other than a batch processing mode. Some of the designs could be

constructed today for reasonable size matrices (n = 100). In particular the

Schimmel/Luk design could be fabricated easily with presently available 32/64-bit

floating point ALU's and 32-bit fixed point multiply-accumulate chips. However,

full application of these architectures, particularly the quadratic arrays, to large,

matrices (n 2 1000) will have to wait for improvements in VLSI technology and

the introduction of wafer scale integration.
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